
The Last Line Effect

Moritz Beller, Andy Zaidman
Delft University of Technology,

The Netherlands

{m.m.beller,a.e.zaidman}@tudelft.nl

Andrey Karpov
OOO “Program Verification Systems,”

Tula, Russian Federation

karpov@viva64.com

Abstract—Micro-clones are tiny duplicated pieces of code; they
typically comprise only a few statements or lines. In this paper,
we expose the “last line effect,” the phenomenon that the last
line or statement in a micro-clone is much more likely to contain
an error than the previous lines or statements. We do this by
analyzing 208 open source projects and reporting on 202 faulty
micro-clones.

I. INTRODUCTION

Software developers oft need to repeat one particular line of

code several times in succession with only small alterations,

like in this example from TrinityCore:1

Example 1. TrinityCore
1 x += o t h e r . x ;
2 y += o t h e r . y ;
3 z += o t h e r . y ;

The 3D-coordinates of the other object are added onto

the member variables representing the coordinates x, y, z.

However, the last line in this block of three similar lines

contains an error, as it adds the y coordinate onto the z
coordinate. Instead, the last line should be

3 z += o t h e r . z ;

Another example from the popular web browser Chromium2

shows that this effect also occurs in similar statements within

one single line:

Example 2. Chromium
1 s t d : : s t r i n g h o s t = . . . ;
2 s t d : : s t r i n g p o r t s t r = . . . ;
3 i f (h o s t != buzz : : STR EMPTY &&

h o s t != buzz : : STR EMPTY)

Instead of comparing twice that host does not equal the

empty string, in the last position, port_str should have been

compared:

3 i f (h o s t != buzz : : STR EMPTY &&
p o r t s t r != buzz : : STR EMPTY)

Lines 1–3 from Example 1 are similar to each other, as

are the statements in the if clause in line 3 from Example 2.

We call such an extremely short block of almost identically

looking, repeated lines or statements a micro-clone. Through

our experience as software engineers and software quality

consultants, we had the intuition that the last line or statement
in a micro-clone is much more likely to contain an error than

1TrinityCore is a popular opensource framework for the creation of Mas-
sively Multiplayer Online Games (MMOGs), www.trinitycore.org.

2Chromium is the open-source part of Google Chrome, www.chromium.org

the previous lines or statements. The aim of this paper is to

verify whether our intuition is indeed true, leading to two

research questions:

RQ 1 Is the last line in a multi-line micro-clone more likely

to contain an error?

RQ 2 Is the last statement in a single-line micro-clone more

likely to contain an error?

As recurring micro-clones are common to most program-

ming languages, the presence of a last line effect can impact

almost any programmer. If we can prove that the last of a series

of similar statements is more likely to be faulty, programmers

and code reviewers know which code segments to give extra

attention to. This can increase software quality by reducing

the amount of errors in a program. When we posted a popular

science blog entry3 about the last line effect, it was picked up

quickly and excitedly in Internet fora.4 Many programmers

agreed to our observation, often assuming a psychological

reason to cause the effect, namely that programmers think they

finished a change one step too early.

A natural way to come up with code like in Examples 1

and 2 is to write the first part, copy-and-paste it the necessary

number of times, and then adapt the pasted fragments. Copy-

and-paste is one of the most widely used idioms in the

development of software [1]. It is easy, fast, hence cheap,

and the copied code is already known to work. Though often

considered harmful, sometimes (micro-)cloning is in fact the

only way to achieve a certain program behavior, like in the

examples above.

A number of clone detection tools have been developed to

find and possibly remove code clones [2], [3]. While these

automated clone detection tools have produced very strong

results down to the method level, they are ill-suited for rec-

ognizing micro-clones in practice because of an abundance of

false-positives. Therefore, we currently have no understanding

of the error proneness of a single line or statement in a micro-

clone, and, to the best of our knowledge, no similar study has

ever been conducted.

Our paper closes this gap by

• introducing the term micro-clone.

• introducing the static analysis tool PVS-Studio that is

able to reliably detect faulty micro-clones, which cannot

be found with traditional clone detection.

3www.viva64.com/en/b/0260
4www.reddit.com/r/programming/comments/270orx/the last line effect

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.34

240

TABLE I
ERROR TYPES FROM PVS-STUDIO AND THEIR DISTRIBUTION.

PVS #multiline #within Σ#
Error Description5 warnings line
Code warnings

V501 There are identical sub-expressions to the left
and to the right of the ‘foo’ operator.

93 88 181

V519 The ‘x’ variable is assigned values twice
successively. Perhaps this is a mistake.

10 0 10

V537 Consider reviewing the correctness of ‘X’
item’s usage.

8 0 8

V524 It is odd that the body of ‘Foo 1’ function is
fully equivalent to the body of ‘Foo 2’.

3 0 3

V525 The code containing the collection of similar
blocks. Check items X, Y, Z, ... in lines N1,
N2, N3, ...

0 1 1

• manually investigating the error proneness of 202 micro-

clones in 208 well-known open-source systems (OSS).

Our findings show that in micro-clones similar to Exam-

ples 1 and 2, the last line or statement is significantly more

likely to contain an error than any other preceding line or

statement.

II. METHODS

In this section, we shortly describe traditional clone detec-

tion, why it is not suitable for the recognition of micro-clones,

and how we circumvented this problem.

As Examples 1 and 2 demonstrate, the code blocks

that we study in this paper contain “syntactically identical

cop[ies]; only variable, type, or function identifiers have [...]

changed.” [4] This makes them extremely short type-2 clones
(usually shorter than 5 lines or statements, see tables II

and III), which we refer to as micro-clones.

A. Why Current Clone Detectors Are Not Suitable

Traditional code clone detection works with a token-, line-,

abstract syntax tree (AST), or graph-based comparison [4].

However, to reduce the number of false-positives, all ap-

proaches are in need of specifying a minimal code clone length

for their unit of measurement (be it tokens, statements, lines

or AST nodes) when applied in practice. This minimal clone

length is usually in the range of 5-10 units [2], [5], which

makes it too long to detect our micro-clones of length 2 to 4

units (see tables II and III).

B. How We Found Faulty Micro-Clones Instead

As clone detection is not able to reliably detect micro-clones

in practice, we devised a different strategy to find them. Our

RQs aim not at finding all possible micro-clones, but only the

ones which are faulty. With this additional constraint, we could

design and implement a handful of powerful analyses based on

simple textual identity. These are able to find faulty code that

is very likely the result of a micro-clone. Table I describes

the five analyses that found micro-clones in our study. For

example, the analysis V501 simply evaluates whether there are

identical expressions next to certain logical operators. If so,

these are at best redundant and therefore cause a maintenance

problem, or at worst present a real bug in the system.

5For a more detailed description, refer to www.viva64.com/en/d

III. STUDY SETUP

In this section, we describe how we set-up our empirical

study and which study objects we selected.

A. Study Design
Our study consists of four easily replicable steps.

1) Run the static analysis checker PVS-Studio on our study

objects, with all checks enabled. PVS-Studio is a com-

mercial static analysis tool developed by OOO Program

Verification System and incorporates dozens of static

analyses from clone detection to anti-usage-patterns of

C-specific library functions. For replication purposes, a

free trial of PVS-Studio is publicly available.6

2) Inspect the corpus of warnings from PVS-Studio and re-

move false-positives and warnings not related to micro-

cloning.

3) For each faulty micro-clone, count the total number of

lines (RQ1) or statements (RQ2) and denote which lines

or statements are faulty.

4) Naively, we assume each line has the same likelihood

1/n of containing an error (H0), independent of its

position in an n-line long faulty micro-clone. For ex-

ample, lines 1 and 2 in a 2-liner clone each have a

0.5 probability of containing an error. However, if we

can show that the error distribution per line from step

(3) significantly differs from such a uniform distribu-

tion on a σ = 0.05 significance level, we reject H0

and assume a non-uniform error distribution. For each

micro-clone length n, we use Pearson’s χ2 test with

n − 1 degrees of freedom to compare our empirical

distribution’s goodness-of-fit to a 1/n-equipartition.

B. Study Objects
To ensure the replicability and feasibility of our study, we

focused on well-known open-source systems. Among the 208

OSS, we found instances of defective micro clones in such

renowned projects as the music editing software Audacity (2

findings), the web browsers Chromium (9) and Firefox (9),

the XML library libxml (1), the databases MySQL (1) and

MongoDB (1), the C compiler clang (14), the egoshooter

Quake III (3), the rendering software Blender (4), the 3D

visualization toolkit VTK (7), the network protocols Samba

(3) and OpenSSL (1), the video editor VirtualDub (3), and the

programming language PHP (1).

IV. RESULTS

In this section, we deepen our understanding of faulty

micro-clones by example and statistical evaluation.

A. In-Depth Investigation of Findings
We ran the complete suite of all PVS-Studio analyses on our

208 OSS from mid-2011 to December 2014. Andrey Karpov,

a professional software consultant, manually sorted-out false

positives, so that 1,683 potentially interesting warnings with

148 different error codes remained.7 We manually investigated

6www.viva64.com/en/pvs-studio-download
7Our raw and analyzed data: dx.doi.org/10.6084/m9.figshare.1313697.

241

all 1,683 and found that 202 warnings with five distinct error

codes were related to micro-cloning. Table II shows the error-

per-line distribution of our 108 micro-clones consisting of

several lines, and table III that of our 94 micro-clones within

one single line. Cells with gray background are non-sensible

(i.e. for a micro-clone of 2 lines, no error can occur in line

3). The yellow diagonal highlights errors in the last line or

statement.

B. Warning Types By Example

In the following, we report on the details of 202 PVS-

Studio-generated warnings by providing representative exam-

ples to convey a better intuitive understanding of our findings.

1) V501: As table I shows, the majority of micro-clone

warnings are of type V501. A prime example for a V501-type

warning comes from Chromium:

Example 3. Chromium
1 re turn
2 ! p r o f i l e . G e t F i e l d T e x t (A u t o f i l l T y p e (

NAME FIRST)) . empty () | |
3 ! p r o f i l e . G e t F i e l d T e x t (A u t o f i l l T y p e (

NAME MIDDLE)) . empty () | |
4 ! p r o f i l e . G e t F i e l d T e x t (A u t o f i l l T y p e (

NAME MIDDLE)) . empty () ;

In this one-liner micro-clone the second and third cloned

statement are lexicographically identical but connected with

the logical OR-operator (||), thus representing a tautology.

Instead, the boolean expression misses to take into account

the surname (NAME_LAST), an example of the last statement

effect in this tricolon.

2) V519: When setting the value of a variable twice in

succession, this is typically either unnecessary – and therefore

a maintenance problem because it makes the code harder to

understand as the first assignment is not effective –, or an

outright bug. In this V519 example from MTASA, m_ucRed
is assigned twice, but the developers forgot to set m_ucBlue.

Example 4. MTASA
1 m ucRed = ucRed ; m ucGreen = ucGreen ; m ucRed =

ucRed ;

3) V537: An illustrative example for a V537 finding comes

from Quake III, where PVS-Studio alerts us to review the use

of rectf.X:
Example 5. Quake III

1 r e c t−>X = r o u n d r (r e c t f .X) ;
2 r e c t−>Y = r o u n d r (r e c t f .X) ;

Indeed, the rectangle is falsely assigned the rounded value of

rectf.X in its y coordinate in the second (i.e. last) line of

this micro-clone.

4) Counterexample: However, not in all instances of an

erroneous micro-clone does the problem lie in the last line

or statement. Take this rare counterexample from Chromium,

which we counted to the 7 instances of an error in line 2 of a

three-liner micro-clone (see table II):

Example 6. Chromium
1 i f (s t d : : abs (d a t a [M01] − d a t a [M10]) > e p s i l o n | |
2 s t d : : abs (d a t a [M02] − d a t a [M02]) > e p s i l o n | |
3 s t d : : abs (d a t a [M12] − d a t a [M21]) > e p s i l o n)

TABLE II
ERROR DISTRIBUTION FOR MICRO-CLONES WITH > 1 LINE.

#total lines
1 2 3 4 5 6 7 8 9 10 >10

1 5 0 0 2 0 0 0 0 0 ...
2 47 7 3 1 1 0 0 0 0 ...
3 12 3 0 1 1 0 0 0 ...
4 9 0 0 0 0 0 0 ...
5 3 0 0 1 0 0 ...
6 2 0 0 0 0 ...
7 1 0 0 0 ...
8 0 1 0 ...
9 2 1 ...

10 0 ...

Σ 0 52 19 15 6 4 2 1 3 1 5
ΣΣ 108

#e
rr

or
s

in
lin

e

χ2 33.9 11.5 11.4 5.7

p 5×10−9 0.003 0.009 0.225

TABLE III
ERROR DISTRIBUTION FOR MICRO-CLONES WITHIN ONE LINE.

#total statements
1 2 3 4 5 > 5

1 0 0 0 0 0
2 67 3 2 0 0
3 15 0 0 0
4 7 0 0
5 0 0

Σ 0 67 18 9 0 0
ΣΣ 94

#e
rr

or
s

in

st
at

em
en

t
χ2 67 21 15

p 2×10−16 2×10−5 0.002

In line 2, the engineers deducted data_[M02] from itself.

Instead, they meant to write:2

s t d : : abs (d a t a [M02] − d a t a [M20]) > e p s i l o n | |

C. Statistical Evaluation

For each column in tables II and III, we performed a

Pearson’s χ2 test on a p = 0.05 significance level to show

whether the individual distributions are non-uniform. Results,

reported in the last two rows, are only meaningful for micro-

clone lengths with enough empirical observations, which are

columns 2, 3 and 4 in both tables.

For RQ1 and RQ2, we got significant p-values for micro-

clones consisting of 2, 3, and 4 lines or statements, respectively

(p < 0.05). This means that we can reject the null hypothesis

that errors are uniformly distributed across statements or lines.

Instead, the distribution is significantly skewed towards the last

line or statement. We would expect similar findings for longer

micro-clones, but these were too rare to derive statistically

valid information.

We can summarize the results across micro-clone lengths

into the two events “error not in last line or statement”

and “error in last line or statement”, shown in table IV.

Our absolute counts show that in micro-clones similar to

Example 1, the last line is more than twice as likely to contain

a fault than all previous lines taken together. When looking at

the individual line length in table II, the last line effect is

even as high as a nine-fold increased error-proneness for the

oft-appearing clone lengths 2 and 4. The results for cloned

242

TABLE IV
SUMMARIZED RESULTS.

multi-line micro-clone one-line micro-clone

#errors in last line/stmt. 76 89
#errors not in last line/stmt. 32 5

Σ 108 94

statements in micro-clones within one line, like Example 2,

are stronger still: We found the last statement to be 17 times

more faulty than all other statements taken together. In fact,

for the 67 micro-clones consisting of two statements, the last

statement was always the faulty one.

In total, our findings confirm the presence of a strong last

line and last statement effect, accepting both RQ1 and RQ2.

We assume the effect to be caused by and large through copy-

and-pasting code, and that developers have a psychological

tendency to think changes of similar code blocks are finished

earlier than they really are. This way, they miss one critical

last modification.

D. Usefulness of Results

Having unveiled a large number of potential bugs in OSS,

we wanted to (a) help the OSS community and (b) see if

our findings represented bugs that would be worth fixing in

reality. We approached the OSS projects by creating issues

with our findings in their bug trackers. Many of our bug

reports lead to quality improvements in the projects, like

fixing the validation bug from Example 2 in Chromium.8

The search query pvs-studio bug | issue9 delivers

numerous successful bug fixes in Firefox, libxml, MySQL,

Clang and many other projects.

V. THREATS TO VALIDITY

In this section, we show internal and external threats to the

validity of our results, and how we mitigated them.

One internal threat concerns how to determine in which

line the error lies. Given Example 2, any of the two state-

ments could be counted as the one containing the duplication.

However, reading and writing source code typically happens

from top to bottom and from left to right [6]. Therefore, the

only natural assessment is to count the line as problematic

according to this strict left-right/top-down-reading order: In

Example 2, only when we read the second statement do we

know it is a duplicate of the first. We hence count the second

statement as the one containing the error. Moreover, in many

cases, as in Example 2, the program context around the micro-

clone (here the definition order of the variables host first

and then port_str) imposes a natural logical order for the

remainder of the program (first check host, then port_str
in line 3). Because counting lines is a well-defined task under

these circumstances, we are not concerned about interrater

reliability.

8codereview.chromium.org/7031055
9www.google.com/search?q=pvs-studio+bug+|+issue

An external factor that threatens the generalizability is that

PVS-Studio is specific to C(++). C is one of the most com-

monly used languages [7]. Therefore, even if our results were

not generalizable, they would at least be valuable to the large C

community. However, our findings typically contain language

features common to most programming languages, like the

variable assignments, if clauses, boolean expressions and array

use in Examples 1 to 5. Almost all programming languages

have these constructs. Thus, we expect to see analogous results

in at least imperative languages such as Java, JavaScript, C#,

PHP, Ruby, or Python. While our overall corpus of findings is

quite large, the average number of ~1 warning per project is

rather small. This could be because PVS-Studio’s analyses for

defective micro-clones are not exhaustive, and that the projects

we studied are stable, production systems with a mature code

base containing relatively little trivial errors.

VI. FUTURE WORK & CONCLUSION

In this section, we describe possible extensions of our study

and summarize our initial results.

Because our study focuses on faulty micro-clones, we

cannot make predictions about how many of all micro-clones

are affected by the last line effect. A promising future research

direction is to develop a clone detector that can reliably detect

all micro-clones, and then to see how many are actually

defective. This gives an indication of the scale of the problem

at hand. Moreover, while our investigation provides a first

theory about the last line effect, the assumed psychological

reasons for its existence open up another vast and fruitful field

for further study.

In 208 open source projects, we found 202 faulty micro-

clones. Our analysis shows that there is a strong tendency for

the last line, and an even stronger for the last statement to

be faulty, called the last line effect. Because of it, we advise

programmers be extra-careful when reading, modifying, code-

reviewing, or creating the last line and statement of a micro-

clone, especially when they copy-and-pasted it.

REFERENCES

[1] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study of
copy and paste programming practices in oopl,” in Proc. Int’l Symp. on
Empirical Software Engineering (ISESE). IEEE, 2004, pp. 83–92.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[3] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach,” Science of
Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[4] R. Koschke, “Survey of research on software clones,” in Duplication,
Redundancy, and Similarity in Software, 2007.

[5] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the International Conference on
Software Engineering (ICSE). IEEE, 2009, pp. 485–495.

[6] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source code
with functional magnetic resonance imaging,” in Proc. Int’l Conference
on Software Engineering (ICSE). ACM, 2014, pp. 378–389.

[7] L. Meyerovich and A. Rabkin, “Empirical analysis of programming
language adoption,” in ACM SIGPLAN Notices, vol. 48, no. 10. ACM,
2013, pp. 1–18.

243

