
How to Catch ’Em All:
WatchDog, a Family of IDE Plug-Ins to Assess Testing

Moritz Beller,* Igor Levaja,* Annibale Panichella,* Georgios Gousios,# Andy Zaidman*

*Delft University of Technology, The Netherlands
#Radboud University Nijmegen, The Netherlands

{m.m.beller, a.panichella, a.e.zaidman}@tudelft.nl
i.levaja@student.tudelft.nl, g.gousios@cs.ru.nl

ABSTRACT
As software engineering researchers, we are also zealous tool smiths.
Building a research prototype is often a daunting task, let alone
building a industry-grade family of tools supporting multiple plat-
forms to ensure the generalizability of our results. In this paper,
we give advice to academic and industrial tool smiths on how to
design and build an easy-to-maintain architecture capable of sup-
porting multiple integrated development environments (IDEs). Our
experiences stem from WatchDog, a multi-IDE infrastructure that
assesses developer testing activities in vivo and that over 2,000 reg-
istered developers use. To these software engineering practitioners,
WatchDog, provides real-time and aggregated feedback in the form
of individual testing reports.
Project Website: http://www.testroots.org

Demonstration Video: https://youtu.be/zXIihnmx3UE

1. INTRODUCTION
As researchers, we have probably all received a review that said

“how does your approach generalize to other languages and en-
vironments?” As tool smiths [1], however, we often lack the re-
sources to build a family of multi-platform solutions, for example
multiple versions of the same plug-in for the many popular Inte-
grated Development Environments (IDEs) [2,3]. Consequently, we
are frequently unable to validate our tools and results in multiple
environments. This limits not only our scientific impact, but also
the number of practitioners that can benefit from our tools. In in-
dustry, particularly start-up tool vendors face a similar lack of re-
sources if they wish to support multiple environments.

In this paper, we give advice to academic and industrial tool
smiths on how to create a family of multi-IDE plug-ins, on the basis
of our own experiences with WatchDog. To scientists, WatchDog is
a research vehicle that tracks the testing habits of developers work-
ing in Eclipse [4, 5] and, introduced in this paper, IntelliJ. With in
excess of 2,000 registered users, the WatchDog infrastructure al-
lows us to get a large-scale, yet fine-grained perspective on how
much time users spend on testing, which testing strategies they
follow (e.g., test-driven development), or how they react to fail-
ing tests. By making these general analyses available to the indi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 May 14–22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4170-7.

DOI: 10.1145/1235

vidual, users of WatchDog benefit from immediate testing and de-
velopment analytics, a feature that neither Eclipse nor IntelliJ sup-
ports out-of-the-box. After the introduction of the testing reports,
even accomplished software engineers were surprised by their own
recorded testing behavior, as a reaction from a software quality con-
sultant and long-term WatchDog user exemplifies: “, Estimated
time working on tests: 20%, actual time: 6%. Cool statistics!”
The key contributions of this paper are:

1) The introduction of WatchDog for IntelliJ, an instantiation of
WatchDog’s new multi-IDE framework.

2) The description of a set of experiences and suggestions for
crafting a multi-IDE plug-in infrastructure.

3) The implementation of improved immediate and aggregated
testing statistics, according to user feedback.

2. MULTI-PLATFORM DEVELOPMENT
In this section, we explain the technical and organizational chal-

lenges that the creation of a multi-platform architecture poses, by
the example of the development of the new WatchDog architecture
for IntelliJ and Eclipse. Then we share our experiences and solu-
tions on how we solved these problems.

Challenges. Below, we outline the technical and organizational
challenges that we experienced when creating a family of IDE plug-
ins.

The Plug-ins Must Be Easy to Maintain (C#1). If plug-ins are
independent forks, every change needs to be ported. Inconsistently
changed clones are one of the biggest threats to the development of
multiple plug-ins [6].

The Host IDEs Differ Conceptually (C#2). While IDEs share
many design commonalities, such as the editor model in which de-
velopers read and modify code, they also feature profound differ-
ences. As one example, IntelliJ does not have a workspace concept,
based on which the Eclipse user could en- or disable WatchDog.

The Host IDEs Differ Technically (C#3). In practice, technical
differences between IDEs and their tooling might be more prob-
lematic than conceptual ones. As an example, Eclipse employs the
open OSGi framework for plug-in loading and dependency man-
agement and the Maven Tycho plug-in for building. For rendering
its user interface, it uses SWT. By contrast, IntelliJ has a home-
grown plug-in and build system, and is Swing-based.

The Data Format Evolves (C#4). As researchers, we are eager
to receive the first data points as early as possible. However, es-
pecially, in the early stages of plug-in development, changes to the
data format are frequent and unforeseeable. Moreover, data struc-
ture from different plug-ins might deviate slightly, for example be-
cause Eclipse requires additional fields for its perspectives.

The Project Has Few (Development) Resources (C#5). For ex-
ample, we developed WatchDog with less than one full-time devel-

http://www.testroots.org
https://youtu.be/zXIihnmx3UE
10.1145/1235


oper at any given time point.
Guidelines. In this section, we give concrete guidelines based

on our own experiences with designing a multi-platform architec-
ture for WatchDog. The guidelines link to concrete solutions in
WatchDog that tool smiths can re-use in their own projects.

Assess the Expected Degree of Commonality (G#0). Before start-
ing the plug-in design or refactoring, tool creators should assess the
amount of features (and, thus, code) that can be shared between two
different IDEs.

Create a mutually shared core (G#1). Figure 1 introduces Watch-
Dog’s 3-layer architecture. In its client layer, both plug-ins extend
one common core. This alleviates the maintenance difficulties of
two forks. Functionality that cannot be shared resides in WatchDog
for Eclipse (right-hand side) and WatchDog for IntelliJ (left-hand
side).

We strongly recommend to setup a dynamic project dependency
to the core in each of the IDEs. A traditional approach would be to
develop the core as a plain-old jar library. This scales well when we
expect only changes from the library (core) to the plug-ins (clients),
and not vice versa. However, because we expect frequent changes
to the core from within the plug-ins, we need a dynamic solution;
the source code of the core should be available as a shared com-
ponent in the development space of both IDEs. This way, changes
to the core from within one IDE are automatically pulled into the
development project in the other. Plug-in creators can import our
Eclipse1 and IntelliJ2 project directories to have a starting exam-
ple of how to setup such a development environment with minimal
overhead.

Find Functional Equivalents (G#2). A feature in one IDE can
1) exist equivalently in the other, e.g. the similar code editors in
Eclipse and IntelliJ, 2) approximate another, e.g. Eclipse’s workspace
and IntelliJ’s Project model, or 3) be missing. For example, Eclipse’s
concept of perspectives is not present in IntelliJ. In the last case, one
can try to either add the functionality over the plug-in.

Abstract over Technical Differences (G#3.1). Technical differ-
ences can limit the amount of commonality in the core. Ideally,
we want the plug-ins to be as shallow as possible and the core to
contain all logic. One problematic example is that IntelliJ’s home-
grown plug-in class loader is incompatible with reflection-enabled
libraries such as MapDB, which we use as our cache. Caching
should not differ per plug-in, thus it is implemented in the core (see

1https://goo.gl/tC0iiV
2https://goo.gl/2CgHsN

Server

Client

Analytics
Pipeline

Core

Reports Reports

1

2

Figure 1: WatchDog’s Three Layer Architecture.

G#1). As a result, we needed to prefix every cache method in Intel-
liJ to replace its current class loader with our own implementation,
and switch back afterwards. We abstracted over this IntelliJ-specific
technicality through the template method pattern.

Regarding how to build a deployable plug-in, we were able to de-
sign a Maven module that automatically builds our IntelliJ plug-in.
While the Maven models for IntelliJ and Eclipse are very different
internally, they can be built with the same Maven command from
the outside. Our Maven POM files3 can serve as examples of how
to create such a uniform project build setup.

Refactor away from the client (G#3.2). On a higher level, we
pushed the main part of our analytics in Figure 1 to the back-
end layer, which is agnostic of the clients and connects directly
to the server: It starts with filtering data (for example, from pre-
release versions or students), and then branches off to 1) generate
computation-intensive nightly reports for our users, which are ac-
cessible over the server layer, and 2) extract data for our own re-
search purposes. The server and analytics layer would not need to
change if we added support for, e.g., Visual Studio or Netbeans.

Use a schema-free database (G#4). Our Mongo database’s NoSQL
format allowed for rapid prototyping and different data format ver-
sions without migration issues. Our performance tests show that
the WatchDog server, run on a four CPU 16-Gigabyte desktop ma-
chine, can handle a load of more than 50,000 users simultaneously.

When analyzing data from a schema-free database, in practice,
a base format is required. As an example, WatchDog was not orig-
inally intended as a multi-platform architecture. Thanks to Mon-
goDB, we could introduce the “IDE” field to differentiate between
the plug-ins later. We did not need to perform a data scheme trans-
lation, and, most importantly, we can still accept the previous ver-
sions of the data format.

Use Automation & Existing Solutions (G#5) Instead of relying
on a heavy-weight application server, we use the free Pingdom ser-
vice4 to monitor the health of our services and an adapted supervise
script5 to restart it in case of crashes. To minimize server costs, a
backup of the database is time-synchronized on the cloud via the
standard Unix-tools rsync and rdiffbackup.

We heavily rely on the use of Continuous Integration (Travis CI),
to execute our static and dynamic analyses. No release may be
published without all indicators being green. Our static analyses
include manual code reviews in pull requests,6 but are mainly auto-
mated: FindBugs, PMD, Teamscale, and CoverityScan in the client
layer and CodeClimate for defect and test coverage control in the
server layer. We found these tools easy to setup and free to use.

The whole WatchDog project (all layers in Figure 1) accounted
for little more than 20,000 Lines of Code (LoC) on November 19th,
2015. We were able to achieve this level of conciseness by follow-
ing G#2 and G#3.2. and building our technology stack on existing
solutions. As an example, the WatchDog server (layer 2 in Fig-
ure 1) is a minimalist Ruby application (200 LoC) that uses Sinatra
for its REST API and unicorn to enable parallelism.

3. TESTING ANALYTICS
In this section we explore WatchDog from a practitioner’s per-

spective. Jenny is an open-source developer who wants to monitor
how much she is testing during her daily development activities in-
side her IDE. Since Jenny uses IntelliJ, she installs the WatchDog
plug-in from the IntelliJ plug-in repository.

3https://goo.gl/Ajc9oJ, https://goo.gl/sE6E17
4https://www.pingdom.com/
5http://cr.yp.to/daemontools.html
6E.g., https://github.com/TestRoots/watchdog/pull/150

https://goo.gl/tC0iiV
https://goo.gl/2CgHsN
https://goo.gl/Ajc9oJ
https://goo.gl/sE6E17
https://www.pingdom.com/
http://cr.yp.to/daemontools.html
https://github.com/TestRoots/watchdog/pull/150


1

2 3

Figure 2: WatchDog’s Immediate Statistics View in the IDE.

Registration. Once WatchDog is installed, a dialog guides Jenny
through the registration process. Jenny registers herself as Watch-
Dog user; Then she registers the project she is working on and for
which WatchDog should collect the daily development and test-
ing statistics. Finally, she fills in a short survey in the IDE that
concerns the testing methodology she follows in this project, for
example whether she applies test-driven development (TDD). Af-
terwards Jenny continues to work on her project using IntelliJ as
usual while WatchDog silently records her testing behavior in the
background.

Developer Statistics. After a small development task, Jenny
wants to know how much of her effort had been devoted to testing,
and if she followed TDD. She can retrieve two types of analytics:
the immediate statistics inside the IDE (marker 1 in Figure 2), and
her personal project report (2). Then, she opens the statistics view
and selects 10 minutes as the time window to monitor. WatchDog
will automatically analyze the recorded data and generate the view
depicted in Figure 2. The immediate statistics view provides infor-
mation about production and test code activities within the selected
time frame. Sub-graph 1 in Figure 2 shows Jenny that she spent
more time (over one minute) reading than writing (only a few sec-
onds). Moreover, of the two tests she executed (marker 2), one was
successful and one failed. Their average execution time was only
1.5 seconds. Finally, Jenny observes that the majority (55%) of her
development time has been devoted to engineering tests (3), not
unusual for TDD [5].

While the immediate statistics view provides an overview of re-
cent activities inside the IDE, the Project Report can be used to
analyze global, and more computationally expensive statistics for a
given project throughout the whole project history. Jenny accesses
her report through a convenient link in the IDE, or through the
TestRoots website7, entering the project’s ID. Jenny’s online proj-
ect report summarizes her development behavior in the IDE over
the whole recorded project lifetime. Analyzing this general report,
Jenny observes that she spent over 195 hours of working time in to-
tal for the project under analysis, corresponding to 36 minutes per
day on average (marker 1 in Figure 3). She was actively working
with IntelliJ in 58% of the time the IDE was actually opened. The
time spent on writing Java code corresponds on average to 55%
of the total time. She spent the remaining 45% reading Java code.
When registering the project, Jenny estimated the working time she
would spend on testing to equal 50%. Using the generated report,

7http://testroots.org/report.html

2

1

Summary of your Test-Driven Development Practices

You followed Test-Driven Development (TDD) 38.55% of your development changes 
(so, in words, quite often). With this TDD followship, your project is in the top 2 (0.1%) 
of all WatchDog projects. Your TDD cycle is made up of 64.34% refactoring and 
35.66% testing phase.

Description Your value Mean

Total time in which WatchDog was active 195.8h 79h

Time averaged per day 0.6h / day 4.9h / day

Detailed Statistics 
In the following table, you can find more detailed statistics on your project.


General Development Behavior Your value Mean

Active Eclipse Usage (of the time Eclipse was open) 58% 40%

Time spent Writing 13% 30%

Time spent Reading 11% 32%
Java Development Behaviour Your value Mean

Time spent writing Java code 55% 49%

Time spent reading Java code 45% 49%

Time spent in debug mode 0% (0h) 2h

Testing Behaviour Your value Mean

Estimated Time Working on Tests 50% 67%

Actual time working on testing 44% 10%

Estimated Time Working on Production 50% 32%

Actual time spent on production code 56% 88%

Test Execution Behaviour Your value Mean

Number of test executions 900 25

Number of test executions per day 3/day 1.58/day

Number of failing tests 370 (41%) 14.29 (57%)

Average test run duration 0.09 sec 3.12 sec

Figure 3: WatchDog’s Project Report.

she figures out that her initial estimation was quite precise since she
actually spent 44% of her time working on test code.

Project Report also provides the TDD statistics for the project
under analysis (marker 2 in Figure 3). Moreover, anonymized and
averaged statistics from the large WatchDog user base allow Jenny
to put her development practices into perspective. This way, project
reports foster comparison and learning among developers. Jenny
finds that, for her small change, she was well above average re-
garding TDD use: She learned how to develop TDD-style from the
“Let’s Developer” Youtube channel.8 The WatchDog project from
“Let’s Developer” shows that he is the second highest TDD fol-
lower of all WatchDog users on 19th November, 2015 (following
TDD for 40% of his modifications).9 In TDD, programmers sys-
tematically co-evolve production and test code, while constantly
cycling between a state of succeeding and failing test cases. To
measure to what extent developers follow it, we use an approach
based on textual matching with regular expressions: In a nutshell,
the analytics pipeline chronologically orders a stream of IDE activ-
ities. Then, it matches regular expressions modeling TDD against
this stream. The portion of matches in the whole sequence gives
a precise indication to which extent a developer applied TDD. We
had used this method [5] to answer “how common is TDD in prac-
tice?” The new feature, embedded in project reports, enables all
WatchDog users to individually examine their own testing style and
conformance with TDD.

Migration to another IDE. Jenny wants to migrate her project
developed using IntelliJ to Eclipse without losing the testing statis-
tics already collected by WatchDog. Since WatchDog is a multi-
IDE solution, Jenny can easily migrate by installing the WatchDog
plug-in for Eclipse available from the Eclipse Market Place. Jenny
selects the alternative registration procedure available for already
registered users. Using her personal user and project ID after mi-
gration, she can continue collecting data on the same project.

8http://www.letsdeveloper.com
9Project report: http://goo.gl/k9KzYj

http://testroots.org/report.html
http://www.letsdeveloper.com
http://goo.gl/k9KzYj


4. RELATED TOOLS
Numerous tools that instrument the IDE in a way similar to Watch-

Dog have been created to assess development activity in vivo. How-
ever, none of these tools focuses on time-related developer testing
in the IDE [5]. We categorize prior works into 1) data-collecting
plug-ins, typically developed in an academic setting, and 2) data-
reporting plug-ins, mostly commercial, which have the goal of pro-
viding developers with feedback on their working habits in general.
WatchDog has an intermediate position, as it does both and also al-
lows its users to make comparison among themselves. Hackystat
with its Zorro extension was one of the first solutions that aimed
at detecting TDD activities [7, 8], similar to the education-oriented
TDD-Guide [9] and the prototype TestFirstGauge [10]. In contrast
to WatchDog, Hackystat did not focus on the IDE, but offered a
multitude of sensors, from bug trackers like Bugzilla to build tools
like ant.

1) Data-Collecting Tools. Spyware [11] and Syde [12] instru-
ment the IDE to respectively make changes a first-class citizen
and to make developers aware of shared work before conflicts oc-
cur. With CodingTracker, Negara et al. investigated how manual
test selection in the IDE is performed to automate test case selec-
tion [13]. Its predecessor, CodingSpectator, collected data to be
able to compare automatic IDE-supported to manual refactorings.
The “Change-Oriented Programming Environment”10 broadly cap-
tures all IDE interactions, targeting the small audience of develop-
ers employing TDD [5]. Minelli et al. [14] investigate IDE use
from a program comprehension point of view, for example: how
much time is spent on reading versus editing code. Finally, the
“Eclipse Usage Data Collector”11 was a project run by the Eclipse
Foundation from April 2008 to February 2011. Its large data set
is primarily useful from an IDE builder’s perspective, collecting
fine-grained and Eclipse-specific data, like perspective changes.

2) Reporting Tools. QuantifiedDev12 aims to provide developers
with a full-fledged analysis platform on their general development
habits. It connects and correlates data from its IDE plug-ins and
repository mining with, for example, temperature information from
the mobile phone. Codealike13 has a similar program comprehen-
sion focus as the work of Minelli et al., but gives users advanced
reports on their development behavior, while leaving out testing.

5. CONCLUSION & FUTURE WORK
In this paper, we described how developers in Eclipse and IntelliJ

can profit from WatchDog by obtaining 1) immediate and 2) aggre-
gated feedback on their testing practices. Next to a new supported
universe of IntelliJ IDEs, we have introduced a new WatchDog fea-
ture, TDD statistics. They give developers fine-grained feedback
on whether and how often they follow TDD.

Beyond describing WatchDog’s architecture, we presented our
experience with developing a family of IDE plug-ins for the Watch-
Dog platform. We highlighted the benefits of light-weight, read-
ily available solutions for software created by academic and start-
up tool smiths, often characterized by intermittent development
and a low amount of available resources, both personal and fi-
nancial. We also shared our concrete practical solutions so others
can profit from the mature open-source WatchDog infrastructure.
Moreover, thanks to the product line on which IntelliJ is based,
we could release WatchDog variants with relatively little effort for
other IDEs such as RubyMine for Ruby, WebStorm for JavaScript,

10http://cope.eecs.oregonstate.edu
11https://eclipse.org/epp/usagedata
12http://www.quantifieddev.org
13https://codealike.com

or PyCharm for Python. Based on the IntelliJ version, we already
released WatchDog for Android Studio. This will enable us to com-
pare the state of Android application testing to the baseline of Java
application testing.

With WatchDog 1.5, we introduced an IntelliJ version and as of
WatchDog 1.6, both the Eclipse and IntelliJ plug-ins feature the new
one core architecture described in this paper.14 As evidenced by an
increasing IntelliJ user base, the transition to the new shared archi-
tecture worked flawlessly.

6. REFERENCES
[1] F. P. Brooks Jr, “The computer scientist as toolsmith ii,”

Communications of the ACM, vol. 39, no. 3, pp. 61–68, 1996.
[2] P. Carbonnelle, “Top IDE index.”

https://pypl.github.io/IDE.html, Last visited:
November 20th, 2015.

[3] I. Burazin, “Most popular desktop IDEs & code editors in
2014.” https://blog.codeanywhere.com/

most-popular-ides-code-editors, Last visited:
November 20th, 2015.

[4] M. Beller, G. Gousios, and A. Zaidman, “How (much) do
developers test?,” in Proc. Int’l Conference on Software
Engineering (ICSE), pp. 559–562, IEEE, 2015.

[5] M. Beller, G. Gousios, A. Panichella, and A. Zaidman,
“When, how, and why developers (do not) test in their IDEs,”
in Proc. of the Joint Meeting of the European Software
Engineering Conf. and the Symp. on the Foundations of Soft.
Engineering (ESEC/FSE), pp. 179–190, ACM, 2015.

[6] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?,” in Proc. Int’l Conf. on Software
Engineering (ICSE), pp. 485–495, IEEE, 2009.

[7] H. Kou, P. M. Johnson, and H. Erdogmus, “Operational
definition and automated inference of test-driven
development with zorro,” Automated Software Engineering,
vol. 17, no. 1, pp. 57–85, 2010.

[8] P. M. Johnson, “Searching under the streetlight for useful
software analytics,” IEEE software, no. 4, pp. 57–63, 2013.

[9] O. Mishali, Y. Dubinsky, and S. Katz, “The tdd-Guide
training and guidance tool for test-driven development,” in
Agile Processes in Software Engineering and Extreme
Programming, pp. 63–72, Springer, 2008.

[10] Y. Wang and H. Erdogmus, “The role of process
measurement in test-driven development,” in 4th Conference
on Extreme Programming and Agile Methods, 2004.

[11] R. Robbes and M. Lanza, “Spyware: a change-aware
development toolset,” in Proc. of the Int’l Conf. on Software
Engineering (ICSE), pp. 847–850, ACM, 2008.

[12] L. Hattori and M. Lanza, “Syde: a tool for collaborative
software development,” in Proc. Int’l Conf. on Software
Engineering (ICSE), pp. 235–238, ACM, 2010.

[13] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig,
“A comparative study of manual and automated
refactorings,” in Proc. European Conf. on Object-Oriented
Programming (ECOOP), pp. 552–576, Springer, 2013.

[14] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi,
“Visualizing developer interactions,” in Proc. of the Working
Conf. on Software Visualization (VISSOFT), pp. 147–156,
IEEE, 2014.

14https://github.com/TestRoots/watchdog/issues/193

http://cope.eecs.oregonstate.edu
https://eclipse.org/epp/usagedata
http://www.quantifieddev.org
https://codealike.com
https://pypl.github.io/IDE.html
https://blog.codeanywhere.com/most-popular-ides-code-editors
https://blog.codeanywhere.com/most-popular-ides-code-editors
https://github.com/TestRoots/watchdog/issues/193

