Toward an Empirical Theory of Feedback-Driven Development

Moritz Beller
Delft University of Technology
m.m.beller@tudelft.nl

ABSTRACT

Software developers today crave for feedback, be it from their peers
or even bots in the form of code review, static analysis tools like
their compiler, or the local or remote execution of their tests in
the Continuous Integration (CI) environment. With the advent of
social coding sites like GITHUB and tight integration of CI ser-
vices like Trav1s CI, software development practices have funda-
mentally changed. Despite a highly changed software engineering
landscape, however, we still lack a suitable description of an indi-
vidual’s contemporary software development practices, that is how
an individual code contribution comes to be. Existing descriptions
like the v-model are either too coarse-grained to describe an in-
dividual contributor’s workflow, or only regard a sub-part of the
development process like Test-Driven Development. In addition,
most existing models are pre- rather than de-scriptive. By contrast,
in our thesis, we perform a series of empirical studies to describe
the individual constituents of Feedback-Driven Development (FDD)
and then compile the evidence into an initial framework on how
modern software development works. Our thesis culminates in
the finding that feedback loops are the characterizing criterion of
contemporary software development. Our model is flexible enough
to accommodate a broad bandwidth of contemporary workflows,
despite large variances in how projects use and configure parts of
FDD.

ACM Reference Format:

Moritz Beller. 2018. Toward an Empirical Theory of Feedback-Driven Devel-
opment. In ICSE 18 Companion: 40th International Conference on Software
Engineering Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3183440.3190332

1 RESEARCH PROBLEM AND MOTIVATION

Today, developers can receive feedback on a piece of code they
created from a variety of sources: the compiler, automated static
analysis tools (ASATs), the CI server, local or remote test runs, peers
who perform a code review, if necessary, a debugging session that
includes remote logging information, application telemetry, or in-
teractive dashboards. Arguably, even end users can give feedback to
the developers, possibly via an automated bug monitoring system
like Eclipse’s automated error reporting. The goal of all these dif-
ferent feedback mechanisms is to enable developers to immediately

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5663-3/18/05...$15.00
https://doi.org/10.1145/3183440.3190332

improve the quality of their software. It is thus evident that feed-
back stands at the center of today’s software development practices
and its center stand various quality assurance mechanisms.
However, so far, research has not come up with a unifying theory
of FDD, partly because of the challenge to define a theory despite the
widely varying ways in which modern software development works
across projects. A theory would first give us a common vocabulary
based on an empirically-grounded understanding of how developers
work today. This, in turn, enables us to better educate students on
relevant concepts, allow projects and developers to easily identify
strengths and weaknesses in their own workflows, and do more
articulate research on topics important to practitioners today.

2 BACKGROUND AND RELATED WORK

A plethora of breakdowns of software engineers’ working processes
are in existence today, from structured, general process decomposi-
tions like the V-model [17], over more flexible guidelines like the
agile manifesto [18] to practically process-free software creation
paradigms like the chaos model [20]. These models, however, tend
to focus less on an individual developer’s workflow, but more on the
general workflow of an entire project. Thus, they are of little help in
describing an individual contributor’s workflow. Other, partly more
recent inventions like Test-Driven Development (TDD) or its off-
spring Behavior-Driven Development provide recommendations
closer to a single developer, but they often focus on a somewhat lim-
ited aspect of the software development process, for example how
to drive development via testing, which leaves out other feedback-
cycles such as code review or static analysis. Thus, they cannot
provide us a model capturing a more holistic code creation process
on the level of an individual contribution. A common denominator
of all these models is that they are prescriptive rather than de-
scriptive: they argue that a certain methodology should be applied
instead of studying what is being applied.

In contrast to these pre facto models, we built up our model of
Feedback-Driven Development post factum on empirical evidence.
We performed empirical analyses on the constituents of today’s
software development workflow first and then compiled this empir-
ical evidence into a model of Feedback-Driven Development. Our
model is thus a contemporary mirror of the development practices
of software developers.

3 INTENDED SOLUTION APPROACH

The Research Path Schema (RPS) is an analytical framework that
allows Software Engineering researchers to clearly communicate
the principal setup of their research. It also describes a way to
theory building via different research paths [22]. It defines a sub-
stantive, conceptual, and methodological domain. Our instantiation
of the RPS in Figure 1 starts from the substantive domain “Quality
Assurance Methods in OSS and Commercial Software” @, makes
observations by means of a large-scale case study (2) and derives a

https://doi.org/10.1145/3183440.3190332
https://doi.org/10.1145/3183440.3190332

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

*Initial Theory on *
*Feedback-Driven *

Development \
, Develop: ~..

| Empirical Case
Studies |
/

Quality
Assurance

Methods
in 0SS and
Commercial
Software

Figure 1: We followed the observational path in the RPS.

set of hypotheses on FDD that together form an initial theoretical
framework (3.

To further increase their generalizability, we perform our stud-
ies in a large-scale fashion, typically on hundreds of projects or
developers. This brings with it a number of complexities, from re-
cruiting study participants over gathering large amounts of data
to processing it. A point of criticism against large-scale analyses is
that findings would sacrifice deep for broad understanding. How-
ever, single-project or small-scale analyses cannot uncover general
phenomena and thus fail to quantify how widespread or impactful
a certain issue is. Large-scale analyses help us single out individual
problems from issues that plague Software Engineering as a craft.

The scale and nature of these studies & requires a heavily tool-
supported approach. We did this by not only mining existing soft-
ware repositories like GIT in a traditional way, but also by creating
our own new data sources: TRAVISTORRENT [7, 8], a Travis CI
“build log treasure trove” [2] and WaTcuHDoOG [4-6, 9, 11], a family
of IDE plugins that collects telemetry information from developer
by instrumenting their IDEs. These techniques are scalable, robust,
and updateable, causing minimal interference with the usual work
habits of developers, thus increasing the realism in our studies.
Compared to a (physical) onlooker, inducing the Hawthorne and
trail effects [1, 14], our approach reduces these biases.

To analyze the data we gathered, we employ methods from the
fields of data visualization, descriptive statistics, statistical hypoth-
esis testing, and probability theory [19]. We enrich these methods
with explanatory methods borrowed and adapted from the social
sciences and known under the umbrella of Grounded Theory [16].
We employ a series of mixed-methods studies that combine several
of the above techniques to answer a research question.

4 RESULTS AND CONTRIBUTIONS

Figure 2 sketches the FDD development workflow alongside its
quality assurance methods typically found in today’s software de-
velopment projects. We take here the technical perspective of how
a code contribution progresses from its initial inception (@ steered
by a project vision, an issue tracker task, or discussions @ to its
final rejection or acceptance into the code base (6. A merged pull
request, patch or otherwise integrated contribution equates an ac-
cepted code change in Figure 2 It is customary for contributions in
the making to go through a cyclical review process until they reach
a pre-defined acceptance criterion. Consequently, most projects
explicitly allow reworking and perfecting contributions after their
initial submission (). The precise order of quality assurance checks
in Figure 2 may deviate from project to project and even feedback
cycle to feedback cycle. The Incremental Change process [21] com-
plements FDD by describing what happens at the “Code Creation”

Moritz Beller

®
@ ©)
Feedback Stages @

Static Analysis @
Gutomated Tocl; (Code Review >

Dynamic Analysis @
CTesting (Iocal)) Cl'esting (remoteD Debugging

D (ot

Figure 2: Studied (black) and related (gray) FDD concepts.

stage (. Outside the scope of our technical investigation of FDD
also falls the analysis of “soft feedback channels” (@ like STACK
OvEeRrrLOow. We divide the quality assurance methods we studied
into Static Analysis (¥, which examines program artifacts or their
source code without executing them [23], and Dynamic Analysis (&,
which relies on information gathered from their execution.

By performing a history analysis on the configuration files of
ASATs, we found that most of the over 100 state-of-the-art projects
on GITHUB only use one ASAT, that is typically only slightly cus-
tomized and normally does not evolve throughout a project’s life
time [3]. To help developers unleash the potential of multiple ASATSs,
we created the tool UAV [15]. On the intersection between manual
code review and ASATs, we discovered the last line effect [12, 13],
the startling realization that the last line or statement in a micro-
clone is more likely to contain a fault than any of the previous lines.
We singled out psycho-cognitive reasons, most likely a working
term memory overload, to be the prime cause and created an ASAT
to integrate the detection of faulty micro-clones in an automated
FDD loop. Overall, our studies suggest that integration of ASATs in
the FDD cycle is lacking behind the integration of dynamic analysis.

We found that “Test-Guided Development” best describes most
developers’ local testing practices [4-6], as they do not follow
strict processes like TDD rigorously and tend to overestimate their
testing efforts in the IDE twofold. With our family of WarcaDog
plugins [9], we studied the testing habits of more than 2,400 Java
and C# developers in four different IDEs over the course of 2.5
years. Results suggest that testing practices largely generalize across
(imperative) programming languages and IDEs. Most local testing
is immediate, with a much shorter feedback loop than running the
entire test suite, which is usually offloaded to the CI. Accordingly,
an analysis of our TRAVISTORRENT [8] “build log treasure trove”
(Travis CI) shows that remote testing is the central phase of CI,
causing more CI build failures than all other reasons combined [7].
Normally, contributions thus need to be reworked if they failed the
testing stage of FDD (2. Finally, debugging is a somewhat opaque
topic to developers not nearly as automated and streamlined as
the other FDD quality assurance techniques: many developers still
employ crude printf techniques, for lack of better knowledge or
tools [10].

Toward an Empirical Theory of Feedback-Driven Development

REFERENCES

(1]

[2

—

=
A=A

(1]

[16]

[17

[18]

=
o

[20

[21]

[22

[23]

John G Adair. 1984. The Hawthorne effect: A reconsideration of the methodolog-
ical artifact. Journal of applied psychology 69, 2 (1984), 334.

Moritz Beller. [n. d.]. Become a Travis CI Log Miner in the MSR
Mining Challenge 2017! ([n. d.]). https://blog.travis-ci.com/
2017-01-16-travis-ci-mining-challenge/.

Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 470-481.

Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2017. Developer Testing in The IDE: Patterns,
Beliefs, And Behavior. IEEE Transactions on Software Engineering PP, 99 (2017),
1-1. https://doi.org/10.1109/TSE.2017.2776152 To appear. Pre-print: http://
ieeexplore.ieee.org/document/8116886/.

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, How, and Why Developers (Do Not) Test in Their IDEs. In Proceedings of
the 10th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 179-190.

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do
Developers Test?. In Proceedings of the 37th International Conference on Software
Engineering (ICSE), NIER Track. IEEE, 559-562.

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In Proceedings of
the 14th International Conference on Mining Software Repositories (MSR).

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the Proceedings of the 14th International Conference on Mining
Software Repositories (MSR).

Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy
Zaidman. 2016. How to Catch ’Em All: WatchDog, a Family of IDE Plug-Ins to
Assess Testing. In 3rd International Workshop on Software Engineering Research
and Industrial Practice (SER&IP 2016). IEEE, 53-56.

Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On the
Dichotomy of Debugging Behavior Among Programmers. In 40th International
Conference on Software Engineering, ICSE 2018, Gothenborg, Sweden.

Moritz Beller, Niels Spruit, and Andy Zaidman. 2017. How developers debug.
Peer Preprints 5 (2017), e2743v1.

Moritz Beller, Andy Zaidman, and Andrey Karpov. 2015. The Last Line Effect. In
23rd International Conference on Program Comprehension (ICPC). ACM, 240-243.
Moritz Beller, Andy Zaidman, Andrey Karpov, and Rolf A. Zwaan. 2017. The
last line effect explained. Empirical Software Engineering 22, 3 (01 Jun 2017),
1508-1536. https://doi.org/10.1007/s10664-016-9489-6

David A Braunholtz, Sarah JL Edwards, and Richard J Lilford. 2001. Are random-
ized clinical trials good for us (in the short term)? Evidence for a “trial effect”.
Journal of clinical epidemiology 54, 3 (2001), 217-224.

Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang, Moritz
Beller, and Andy Zaidman. 2017. UAV: Warnings from multiple Automated Static
Analysis Tools at a glance. In IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria, February
20-24, 2017. 472-476. https://doi.org/10.1109/SANER.2017.7884656

Kathy Charmaz and Linda Liska Belgrave. 2007. Grounded theory. Wiley Online
Library.

Kevin Forsberg and Harold Mooz. 1992. The relationship of systems engineering
to the project cycle. Engineering Management Journal 4, 3 (1992), 36-43.
Martin Fowler and Jim Highsmith. 2001. The agile manifesto. Software Develop-
ment 9, 8 (2001), 28-35.

Will G Hopkins. 1997. A new view of statistics. http://sportsci.org/resource/stats/.
Accessed March 27, 2017.

LBS Raccoon. 1995. The chaos model and the chaos cycle. ACM SIGSOFT Software
Engineering Notes 20, 1 (1995), 55-66.

Vaclav Rajlich and Prashant Gosavi. 2004. Incremental change in object-oriented
programming. IEEE software 21, 4 (2004), 62-69.

Klaas-Jan Stol and Brian Fitzgerald. 2015. Theory-oriented software engineering.
Science of Computer Programming 101 (2015), 79-98.

BA Wichmann, AA Canning, DL Clutterbuck, LA Winsborrow, NJ Ward, and
DWR Marsh. 1995. Industrial perspective on static analysis. Software Engineering
Journal 10, 2 (1995), 69-75.

ICSE *18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

https://web.archive.org/web/20171204125444/https://blog.travis-ci.com/2017-01-16-travis-ci-mining-challenge/
https://web.archive.org/web/20171204125444/https://blog.travis-ci.com/2017-01-16-travis-ci-mining-challenge/
https://doi.org/10.1109/TSE.2017.2776152
http://ieeexplore.ieee.org/document/8116886/
http://ieeexplore.ieee.org/document/8116886/
https://doi.org/10.1007/s10664-016-9489-6
https://doi.org/10.1109/SANER.2017.7884656
http://web.archive.org/web/20170327121843/http://sportsci.org/resource/stats/

