
When, How, and Why Developers (Do Not) Test
in Their IDEs

Moritz Beller
Delft University of Technology,

The Netherlands
m.m.beller@tudelft.nl

Georgios Gousios
Radboud University Nijmegen,

The Netherlands
g.gousios@cs.ru.nl

Annibale Panichella,
Andy Zaidman

Delft University of Technology,

a.panichella@tudelft.nl,
a.e.zaidman@tudelft.nl

ABSTRACT

The research community in Software Engineering and Software
Testing in particular builds many of its contributions on a set of
mutually shared expectations. Despite the fact that they form the
basis of many publications as well as open-source and commer-
cial testing applications, these common expectations and beliefs
are rarely ever questioned. For example, Frederic Brooks’ state-
ment that testing takes half of the development time seems to have
manifested itself within the community since he first made it in the
“Mythical Man Month” in 1975. With this paper, we report on
the surprising results of a large-scale field study with 416 software
engineers whose development activity we closely monitored over
the course of five months, resulting in over 13 years of recorded
work time in their integrated development environments (IDEs).
Our findings question several commonly shared assumptions and
beliefs about testing and might be contributing factors to the ob-
served bug proneness of software in practice: the majority of devel-
opers in our study does not test; developers rarely run their tests in
the IDE; Test-Driven Development (TDD) is not widely practiced;
and, last but not least, software developers only spend a quarter of
their work time engineering tests, whereas they think they test half
of their time.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Testing

tools

General Terms

Experimentation, Human Factors, Measurement, Theory, Verifica-
tion

Keywords

Developer Testing, Unit Tests, Testing Effort, Field Study, Test-
Driven Development (TDD)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’15 Bergamo, Italy
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
How much should we test? And when should we stop testing?

Since the dawn of software testing, these questions have tormented
developers and their managers alike. In 2006, twelve software com-
panies declared them pressing issues during a survey on unit testing
by Runeson [1]. Fast forward to eight years later, and the questions
are still unsolved, appearing as one of the grand research challenges
in empirical software engineering [2]. But before we are able to an-
swer how much we should test, we must first know how much we
are testing.

Post mortem analyses of software repositories by Pinto et al. [3]
and Zaidman et al. [4] have provided us insights into how tests are
created and evolved at the commit level. However, there is a sur-
prising lack of knowledge of how developers actually test, as evi-
denced by Bertolino’s call to gain a better understanding of testing
practices [5]. This lack of empirical knowledge of when, how, and
why developers test in their Integrated Development Environments
(IDEs) stands in contrast to a large body of folklore in software
engineering [2], including Brooks’ statement from “The Mythical
Man Month” [6] that “testing consumes half of the development
time.” In this paper, we start to fill our knowledge gap with resilient,
empirical observations on developer testing in the real world.

In our investigation, we focus on developer tests [7], i.e. codi-
fied unit, integration, or system tests that are engineered inside the
IDE by the developer. Developer testing is often complemented by
work outside the IDE, such as manual testing, automated test gen-
eration, and dedicated testers, which we explicitly leave out of our
investigation.

By comparing the state of the practice to the state of the art of
testing in the IDE [8–10], we aim to understand the testing patterns
and needs of software engineers, expressed in our five research
questions:
RQ1 When and Why Do Developers Test?
RQ2 How and Why Do Developers Run Tests?
RQ3 How Do Developers React to Test Runs?
RQ4 Do Developers Follow Test-Driven Development (TDD)?
RQ5 How Much Do Developers Test?

If we study these research questions in a maximally large and
varied population of software engineers, the answers to them can
provide important implications for practitioners, designers of next-
generation IDEs, and researchers. To this end, we have set up
an open-ended, longitudinal field study [11] that has run for five
months and involved 416 software engineers from industry as well
as open-source projects around the world. The field study is en-
abled by the Eclipse plugin WatchDog, which instruments the IDE
and objectively observes how developers work on and with tests.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2786843

179

Our results indicate that over half of the studied users do not
practice testing; even if the projects contain tests, developers rarely
execute them in the IDE; Test-Driven Development is not a widely
followed practice; and, completing the overall low results on test-
ing, developers overestimate the time they devote to testing two-
fold. These results counter common wisdom about developer test-
ing, and could help explain the observed bug-proneness of real-
world software systems.

2. RESEARCH DESIGN
In this section, we describe the setup of our study, the acquisition

and demographics of its participants, and the statistical tests that we
applied.

2.1 Study Design
To be able to make statements about the general state of test-

ing, it is necessary that we study our research questions in a large-
scale field study with hundreds of participants. By instrumenting
the IDE with a purpose-built plugin, WatchDog, we can reach the
desired number of objective observations of developer testing. Us-
ing a mixed-methods approach, we compare the results from the
automated monitoring of developers to their subjective survey an-
swers.

2.2 Study Participants
In this section, we first explain how we attracted study partici-

pants and then report on their demographics.

2.2.1 Acquisition of Participants

We reached out to potential developers to install WatchDog in
their IDE by:

1) Providing a high-profile project website.1

2) Raffling off prizes.
3) Delivering real-value to the users of WatchDog in that it

gives feedback on their development behavior.
4) Writing articles in magazines and blogs relevant to Java and

Eclipse developers (Eclipse Magazin, Jaxenter, EclipsePlanet,
Heise News).

5) Giving talks and presentations at developer conferences (Dutch
Testing Day, EclipseCon).

6) Participating in a YouTube Java Developer series.2

7) Penetrating social media (Reddit, Hackernews, Twitter, Face-
book).

8) Approaching software development companies.
9) Contacting developers, among them 16,058 Java developers

on GitHub.
10) Putting our plugin in a well-established Eclipse marketplace.3

11) Launching a second marketplace which increases the visi-
bility of scientific plugins within the Eclipse ecosystem, to-
gether with the Eclipse Code Recommenders project.4

We put emphasis on the testing focus of WatchDog to attract
developers interested in testing.

2.2.2 Demographics of Participants

In total, 943 users had installed and registered WatchDog by
March 1st 2015. In this paper, we report on the data we received

1
http://www.testroots.org

2
http://youtu.be/-06ymo7dSHk

3
https://marketplace.eclipse.org/content/

testroots-watchdog
4
http://www.codetrails.com/blog/

test-analytics-testroots-watchdog

0

30

60

90

0 100 200 300 400
Sessions per developer

N
u
m

b
e
r

o
f
d
e
ve

lo
p
e
rs

0

50

100

150

< 1 1−2 3−6 7−10 > 10
Programming Experience (Years)

N
u
m

b
e
r

o
f
d
e
ve

lo
p
e
rs

Figure 1: Distributions of the sessions per developer and their

programming experience.

from November 1st 2014 to March 1st 2015, excluding student data
that we had analyzed separately [12]. As we updated WatchDog to
fix bugs and integrate new features (see Section 2.3.2), we also fil-
tered out data from the deprecated versions 1.0 and 1.1. In total,
after filtering, we consider 416 different users and their 1,337,872
user actions (so-called intervals, see Section 2.3) from 68 different
countries between November 1st 2014 and March 1st 2015.

The most frequent country of theses users is the United States
(25% of users), followed by China (7%), Germany (7%), Nether-
lands (5%), and India (5%). The other half of users comes from 62
remaining countries, with less than 5% total share each. Our devel-
opers predominately use Windows (75% of users), 14% use MacOS
and 11% Linux. Their programming experience, shown in Figure 1,
is normally distributed (a Shapiro-Wilks test fails to reject the null
hypothesis that it is not normally distributed at p = 0.74). Gen-
erally, we have slightly more in-experienced (< 3 years, 60% of
users) than experienced users. On the other hand, very experienced
developers (> 7 years) represent more than 20% of our population.

The 416 participants registered 460 unique projects (a project
cannot be shared among users). The registered projects stem from
industry as well as famous open-source initiatives like the Apache
Foundation, but also include private projects. In total, we observed
24,255 hours of working time in which Eclipse was open for these
registered projects. Using the average work time for OECD coun-
tries of 1770 hours per year,5 this amounts to 13.7 observed devel-
oper years in the IDE. In total, these recorded 13.7 years encompass
5,665 distinct Eclipse sessions. This large-scale approach broad-
ens our technical study on developer testing in the IDE to a very
large set of developers (compared to 4.2 years of student data in
our ICSE NIER paper [12]). Furthermore, our technical develop-
ment behavior data is complemented by 416 survey responses from
the registration of WatchDog users and projects.

2.3 WatchDog Infrastructure
Starting with an initial prototype in 2012, we evolved WatchDog

into an open-source and production-ready software solution6 with
a client-server architecture, which is designed to scale up to thou-
sands of simultaneous users.

2.3.1 WatchDog Client

We implemented WatchDog as an Eclipse plugin, because the
Eclipse Java Development Tools edition (JDT) is one of the most
widely used IDEs for Java programming [13]. Thanks to its inte-
grated JUnit support, the Eclipse JDT facilitates developer testing.

WatchDog instruments the Eclipse JDT environment and regis-
ters listeners for UI events related to programming behavior and

5
http://stats.oecd.org/index.aspx?DataSetCode=ANHRS

6
https://github.com/TestRoots/watchdog

180

http://www.testroots.org
http://youtu.be/-06ymo7dSHk
https://marketplace.eclipse.org/content/testroots-watchdog
https://marketplace.eclipse.org/content/testroots-watchdog
http://www.codetrails.com/blog/test-analytics-testroots-watchdog
http://www.codetrails.com/blog/test-analytics-testroots-watchdog
http://stats.oecd.org/index.aspx?DataSetCode=ANHRS
https://github.com/TestRoots/watchdog

test executions. We group coherent events as intervals, which com-
prise a specific type, a start and an end time. This abstraction al-
lows us to closely follow the workflow of a developer without being
overwhelmed by hundreds of fine-grained UI events per minute.
Every time a developer reads, modifies or executes a test or pro-
duction code class, WatchDog creates a new interval and enriches
it with type-specific data.

2.3.2 WatchDog Server

WatchDog intervals are locally cached, allowing offline work,
and automatically sent to our server as a JSON stream. The WatchDog
server accepts the JSON data via a REST API. After sanity check-
ing, the intervals are stored in a NoSQL database. This infrastruc-
ture provides high extensibility up to thousands of clients and easy
maintenance in case of changes in the data format in the client.
Moreover, we can remotely trigger an update of all WatchDog clie-
nts, which allows us to fix bugs and extend its functionality any
time. Automated ping-services monitor the health of our web API,
so we can immediately react if a problem occurs. Thereby, our
WatchDog service achieved an uptime of 99.6%.

2.4 Developer Survey
Having installed WatchDog, a developer first signs-up as a user

with WatchDog (or reuses an already registered ID), and after that
registers the current Eclipse workspace as a WatchDog project.
Both registrations includes a short survey that the developer can
fill out in the IDE. Key questions in the survey regard developers’
programming expertise, whether and how they test their software,
and if so, which testing frameworks they employ and how much
time they think they spend on testing.

2.5 Statistical Evaluation
When applying statistical tests in the remainder of this paper,

we regard results as significant at a 95% confidence interval (α =
0.05), i.e. iff p 6 α . All results of tests ti in the remainder of this
paper are statistically significant at this level, i.e. ∀i : p(ti)6 α .

For each test ti, we first perform a Shapiro-Wilk Normality test

si [14]. Since all our distributions significantly deviate from a nor-
mal distribution according to Shapiro-Wilk (∀i : p(si)< 0.01 6 α),
we use non-parametric tests: 1) For testing whether there is a sig-
nificant statistical difference between two distributions, we use the
non-parametric Wilcoxon Rank Sum test. 2) For performing cor-
relation analyses, we use the non-parametric Spearman rank-order

(ρ) correlation coefficient [15]. Hopkins’s guidelines facilitate the
interpretation of ρ [16]: they assume no correlation for 0 6 |ρ| <
0.3, a weak correlation for 0.3 6 |ρ|< 0.5, a moderate correlation
for 0.5 6 |ρ|< 0.7, and a strong correlation for 0.7 6 |ρ|6 1.

3. RESEARCH METHODS
In this section, we describe how the WatchDog plugin instru-

ments the Eclipse IDE and collects data, and how we prepared the
data for our research questions on testing pattern correlations and
the TDD process.

3.1 IDE Instrumentation
WatchDog focuses around the concept of intervals. Table 1 gives

a technical description of the different interval types. They appear
in the same order as in Figure 2, which exemplifies a typical de-
velopment workflow to demonstrate how WatchDog monitors IDE
activity with intervals:

A developer, Mike, starts Eclipse, and WatchDog creates three
intervals: EclipseOpen, Perspective, and UserActive

(1). Thereafter, Mike executes the unit tests of the production

 Time

Interval Type

22

33

11

44 66

...

...

...

...

...
55

Figure 2: Exemplary workflow visualization with intervals.

The interval types are described in the same order in Table 1.

class he needs to change, triggering the creation of a JUnitExe-
cution interval, enriched with the test result “Passed” (2). Hav-
ing browsed the source code of the file (3) to understand which
parts need to change (a Reading interval is triggered), Mike then
performs the necessary changes. A re-execution of the unit test
shows Mike it fails after his edit (4). Mike steps through the test
with the debugger (5) and fixes the error. The final re-execution of
the test (6) succeeds.

Intervals concerning the user’s activity (Reading, Typing,
and other general activity) are backed by an inactivity timeout,
so that we only record them when the user is actively working in
the IDE. However, if we detect that the IDE lost the focus (end of
EclipseActive interval), or the user switched from writing file
X (Typing) to reading file Y (Reading), we immediately end
the currently opened interval. Intervals may overlap. For example,
Typing or Reading intervals are wrapped inside a user activ-
ity (which is again wrapped within an EclipseActive, Per-
spective and EclipseOpen interval). However Reading
and Typing intervals are by nature mutually exclusive. We re-
fer to an Eclipse session as the timespan in which Eclipse was open
and not closed or interrupted, for example because the developer
suspended the computer. All intervals that belong to one Eclipse
session are hence wrapped within one EclipseOpen interval, as
in Figure 2 (1).

Depending on the type of the interval, we enrich it with different
numerical and categorical information: in a Reading or Typing
interval, we store whether the underlying file is a Java class, a hash
of its filename, its length in source lines of code without whites-
paces (SLOC), and whether it is production or test code. Addi-
tionally, for Typing intervals, we calculate the Levensthein edit
distance [17] between the content of the file before and after the
modification in the interval. This gives us an indication of the size
of the changes made in the Typing interval. If it is a Java class, we
rate the file that the developer accesses in a Reading or Typing
interval as either production or test code. We classify any other file
type, for example an XML configuration file, as unknown.

We have four different recognition categories for test classes
(see Table 1): To designate the file as a test that can be executed

181

Table 1: Overview of WatchDog intervals.

Interval Type Description

JUnitExecution Interval creation invoked through the Eclipse JDT-integrated JUnit runner (also working for Maven projects). Each test execution is enriched with the
SHA-1 hash of its test name (making a link to a Reading or Typing interval possible), test result, test duration and child tests executed.

Reading Interval in which the user was reading in the IDE. Backed by inactivity timeout. Enriched with an abstract representation of the read file, containing the
SHA-1 hash of its filename, its SLOC, and an assessment whether it is production code, or test code. A test can further be categorized into a test (1) which
uses JUnit and is therefore executable in the IDE; (2) which employs a testing framework; (3) which contains “test” in its filename; (4) or contains “test” in
the project file path (case-insensitive). Backed by inactivity timeout.

Typing Interval in which the user was typing in the IDE. Backed by inactivity timeout.

UserActive Interval in which the user was actively working in the IDE (evidenced for example by keyboard or mouse events). Backed by inactivity timeout.
EclipseActive* Interval in which Eclipse had the focus on the computer. *) Not shown in Figure 2.

Perspective Interval describing which perspective the IDE was in (Debugging, regular Java development, ...)

EclipseOpen Interval in which Eclipse was open. If the computer is suspended, the EclipseOpen is closed and the current sessions ends. Upon resuming, a new
EclipseOpen interval is started, discarding the time in which the computer was sleeping. Each session has a random, unique identifier.

in Eclipse, we require the presence of at least one JUnit import
together with at least one method that has the @Test annotation
or that follows the testMethod name convention. This way, we
support both JUnit3 and JUnit4. Furthermore, we recognize im-
ports of common Java test frameworks and their annotations (Mo-
ckito, PowerMock). As a last resort, we recognize when a file con-
tains “Test” in its file name or the project file path. It seems a
common convention to pre- or postfix the names of test files with
Test [4], or to place all test code in one sub-folder. For example,
the standard Maven directory layout mandates that tests be placed
under src/test/java.7 Thereby, we can identify and differen-
tiate between all tests that employ standard Java testing frameworks
as test runners for their unit, integration, or system tests, test-related
utility classes, and even tests that are not executable. We consider
any Java class that is not a test according to this broad test recogni-
tion strategy to be production code.

3.2 Sequentialization of Intervals
For RQ3 and RQ4, we need a linearized stream of intervals fol-

lowing each other. We generate such a sequence by ordering the
intervals according to their start time. For example, in Figure 2,
this sequenced stream after the first test failure in (4) is:
Failing Test→ Switch Perspective→ Start

JUnit Test→ Read Production Code→ ...

3.3 Correlation Analysis
We address our research questions RQ1 and RQ2 with the help of

correlation analyses. For example, one of the steps to answer RQ1
is to correlate the amount of changed code, i.e. the code churn [18],
introduced in all Typing intervals on test code, with the number
of test executions. Even though strongly coupled (ρ = 0.91), the
code change is a more precise measure of how much a developer
changed a file than purely counting the number of Typing inter-
vals on the file. For our analysis, the size of the modifications to
a file is more important than in how many Typing intervals the
modification happened.

Intuitively, if developers change a lot of test code, they should
run their tests more often. Like all correlation analyses, we first
compute the churn and the number of test executions for each Ec-
lipse session and then calculate the correlation over these summed-
up values of each session. Eclipse sessions form a natural divider
between work tasks and work days, as we expect that developers
typically do not close their IDE or laptop at random, but exactly
when they do not need it anymore, see Table 1. Therefore, we re-
frained from artificially dividing our data into smaller time units.

7
http://maven.apache.org/guides/getting-started

Introducing such a division would also pose a problem to a neces-
sary sequentialization of our intervals, because it is not clear how
to linearize overlapping intervals.

3.4 Recognition of Test-Driven Development
Test-Driven development (TDD) is a software development pro-

cess originally proposed by Beck [19]. While a plethora of stud-
ies have been performed to quantify the supposed benefits from
TDD [20, 21], it is unclear how many developers use it in practice.
In RQ4, we investigate (1) how many developers follow TDD (2) to
which extent. In the following, we apply Beck’s definition of TDD
to the WatchDog interval concept, providing the first verifiable def-

inition of TDD in practice.
TDD is a cyclic process comprising a functionality-evolution

phase depicted in Figure 3, optionally followed by a functionality-
preserving refactoring phase depicted in Figure 4. We can best
illustrate the first phase with the strict non-finite automaton (NFA,
[22]) at the top of Figure 3 and our developer Mike, who is now
following TDD: before Mike introduces a new feature or performs
a bug fix, he assures himself that the test for the production class
he needs to change passes (JO in Figure 3 stands for a JUnit-
Execution that contains a successful execution of the test under
investigation). Thereafter, he first changes the test class (hence the
name “test-first” software development) to assert the precise ex-
pected behavior of the new feature or to document the bug he is
about to fix. We record such changes in a Typing interval on test
code. Naturally, as Mike has not yet touched the production code,
the test must fail (JE). Once work on the test is finished, Mike
switches to production code (Type Prod.), in which he makes

Figure 3: Strict (top) and lenient NFA of TDD.

182

http://maven.apache.org/guides/getting-started

Figure 4: NFA for the refactoring phase of TDD.

Figure 5: Compile errors while creating a TDD test.

precisely the minimal required set of changes for his failing test to
pass again (JO). The TDD cycle can begin anew.

When we tried to apply this strict TDD process, we found that it
is very difficult to follow in reality, specifically the clear separation
between changes to the test, and later changes to the production
code. Especially when developing a new feature like WatchDog-
Update in Figure 5, developers face compilation errors during the
test creation phase of TDD, because the class or method they want
to assert on (WatchDogUpdate) does not exist yet. To be able to
have an executing, but failing test, they have to mix in the modifi-
cation or creation of production code. Moreover, developers often
know the result of a test without executing it (for example, if it con-
tains compile errors), and that a test case succeeds before they start
to work on it (for example, because they fixed the test on their pre-
vious day at work). To adjust for these deviations between a strict
interpretation of TDD and its application, we have created the le-
nient non-finite automaton (ε-NFA, [22]) at the bottom of Figure 3,
which is more suitable for the recognition of TDD in practice. Due
to the ε-edge, a TDD cycle can directly start with modifications of
test code.

TDD does not only comprise a functionality changing phase, but
also the code refactor phase depicted in Figure 4. In this phase, de-
velopers have the chance to perform functionality-preserving refac-
torings. Once they are finished with refactoring, the tests must still
pass [19]. It is impossible to separate changes between production
and test classes in the refactoring phase in practice, as the latter rely
on the API of the first.

To assess how strictly developers follow TDD, we convert all
three NFAs to their equivalent regular expressions and match them
against the linearized sequence of intervals (see Section 3.2). For
a more efficient analysis, we can remove all intervals from the se-
quentialized stream except for JUnitExecution and Typing

intervals, which we need to recognize TDD. To be able to draw a
fine-grained picture of developers’ TDD habits, we performed the
analysis for each session individually. We count refactoring activ-
ity towards the total usage of TDD. The portion of matches in the
whole string sequence gives us a precise indication of a developer’s
adherence to TDD.

4. RESULTS
In the following, we detail the results to each of our research

questions individually per subsection.

4.1 RQ1: When and Why Do Developers Test?
To be able to answer how and why developers test, we must first

assess:
RQ1.1 How Common Is Testing?

When we apply the broadest recognition of test classes as de-
scribed in Section 3.1 and Table 1, 200 of the 460 analyzed projects
contain tests that a user either read or modified. Hence, for 57% of
projects, we could not detect work on tests in the IDE, neither to
execute, nor to read or modify them.

If we narrow down the recognition of tests to JUnit tests, which
can be run through Eclipse, we find that 86 projects have such tests.
When we compare these projects to the projects who claimed to
have JUnit tests in the survey, an intriguing discovery emerges:
only for 47% of projects which claimed to have JUnit tests in the
survey, could we technically detect them in our interval data (as
either Reading, Typing, or JUnitExecution). Our second
sub-research question is:

RQ1.2 How Frequently Are Tests Executed?
From the 86 projects, we observed test executions in the IDE in 73
projects (85%). The 68 developers of these 73 projects contributed
3,424 sessions and ran 10,840 test executions.

We can divide the 3,424 sessions into two groups: we find 2,897
sessions (85%) in which no test was run (but could have been run,
as we know the projects contains executable tests), and only 527
sessions in which at least one test was run. Consequently, the av-
erage number of executed tests per session is relatively small (3.2)
for these 73 projects. When we consider only sessions in which at
least one test was run, the average number of test runs per session
is 20.7.

When developers work on tests, we expect that the more they
change their tests, the more they run their tests to inform themselves
about the current execution status of the test they are working on.
RQ1.3 and following can therefore give an indication as to why and
when developers test:

RQ1.3 Do Developers Test Their Test Code Changes?
The correlation between test code churn and the number of test

runs yields a moderately strong ρ = 0.66 in our dataset. While there
is an obvious relationship between the two variables, the correlation
does not imply a causation or a direction. Therefore, we cannot say
that developers executed more tests because they changed more test
code, although this is one of the likely possibilities.

A logical next step is to assess whether the same holds for mod-
ifications to production code: Do developers assert that their pro-
duction code still passes the tests?

RQ1.4 Do Developers Test Their Production Code Changes?
This correlation is significant, but weaker, with ρ = 0.38. Finally,
in how many cases do developers modify their tests, when they
touch their production code (or vice versa), expressed in:

RQ1.5 Do Developers Co-Evolve Test and Production Code?
A weak ρ = 0.35 suggests that tests and production code have some
tendency to change together, but it is certainly not the case that
developers modify their tests for every production code change, and
vice versa.

4.2 RQ2: How and Why Do Developers Run
Tests?

When developers run tests in the IDE, they want to see their exe-
cution result as fast as possible. To be able to explain how and why
developers execute tests, we must therefore first know how long
developers have to wait before they see a test run finish:

RQ2.1 How Long Does a Test Run Take?
50% of all test executions finish within half a second, and over

75% within five seconds (see Table 2). Test durations longer than

183

Table 2: Descriptive statistics for important variables. Histograms are in log scale.
Variable Unit Min 25% Median Mean 75% Max Histogram

JUnitExecution duration Sec 0 0.03 0.54 47.14 3.45 73,810

Tests per JUnitExecution Items 1 1 1 8.28 1 1,917

Percentage of executed tests % 0 1 1 12 12.5 100

Time to fix failing test Min 0 1.7 9.42 65.12 25.04 4,881

one minute represent 7.4% of the JUnitExecutions. Only 4.8%
of runs take more than two minutes.

Having observed that most test runs are short, our next step is to
examine whether short tests facilitate testing:

RQ2.2 Do Quick Tests Lead to More Test Executions?
To answer this research question, we collect the test execution

length and the number of times developers executed tests in each
session, as in Section 4.1. Then, we compute the correlation be-
tween the two distributions. If our hypothesis was true, we would
receive a negative correlation between the test duration and the
number of test executions. This would mean that short tests are
related to more frequent executions. However, the Spearman rank
correlation test shows that this is not the case, as there is no corre-
lation (ρ = 0.26). Combined with the fact that only a small number
of tests are executed, it may suggest that developers explicitly se-
lect test cases [23]. While test selection is a complex problem on
build servers, it is interesting to investigate how developers perform
it locally in their IDE:

RQ2.3 Do Developers Practice Test Selection?
In JUnit, a test execution which we capture in a JUnitExe-

cution interval may comprise multiple child test cases. 87% of
test executions contain only one test case, while only 6.2% of test
executions comprise more than 5 tests, and only 2.9% more than
50 tests (Table 2).

Test selection likely happened if the number of executed tests in
one JUnitExecution is smaller than the total number of tests
for the given project (modulo test renames, test deletion and test
moves). The ratio between these two measures allows us to es-
timate the percentage of selected test cases. If it is significantly
smaller than 100%, developers practiced test selection. Our data in
Table 2 shows that developers selected only 1% of all their avail-
able tests for execution in 50% of the cases, while they ran all tests
without test selection in only 3.7% of cases.

To explain how and why test selection happens, we investigate
two possible scenarios: in the first, we assume that the developer
picks out only one of the tests run in the previous test execution,
for example to examine why the selected test failed. In the second
scenario, we assume that the developer excludes a few disturbing
tests from the previous test execution. In the 240 cases in which
developers performed test selection, we can attribute 90% of selec-
tions to scenario 1, and 9% to scenario 2. Hence, our two scenarios
are able to explain 99% of test selections in the IDE.

4.3 RQ3: How Do Developers React to Test
Runs?

Having established how often programmers execute tests in their
IDE in the previous research questions, it remains to assess:

RQ3.1 How Frequently Do Tests Pass and Fail?
There are three scenarios under which a JUnit execution can re-

turn an unsuccessful result: The Java compiler might detect compi-
lation errors, an unhandled runtime exception is thrown during the
test case execution, or a test assertion is not met. In either case, the
test acceptance criterion is never reached, and we therefore con-
sider them as a test failure, following JUnit’s definition.

In the aggregated results of all observed 10,840 test executions,
65% (7,047) of JUnit executions fail, and only 35% pass success-
fully. As test failures are apparently a situation developers are often
facing, we ask:

RQ3.2 How Do Developers React to a Failing Test?
For each failing test case, we generate a linearized stream of

subsequently following intervals, as explained in Section 3.2. By
counting and summing up developers’ actions after each failing test
for up to five minutes (300 seconds), we can draw a precise picture
of how developers manage a failing test in Figure 6. The most im-
mediate reaction in over 60% of the cases within the first seconds
is to read production code. The second most common reaction is
to read test code with 17% in the first second. However, already
after five seconds, switching to another window is more common
than reading test code. While switching focus away from Eclipse
becomes a popular reaction five seconds after a test failure, read-
ing production code mirrors this curve in the opposite direction,
decreasing by 15% points within the first five seconds. The other
curves show a more steady distribution from the beginning. Inter-
estingly, switching to the Debug perspective or altogether quitting
Eclipse almost never happens and is therefore not shown. After two
minutes, the different reactions trend asymptotically towards their
overall distribution, with little variability.

The logical follow-up to RQ3.2 is to ask whether developers’
reactions to a failing test are in the end successful, and:

RQ3.3 How Long Does It Take to Fix a Failing Test?
To answer this question, we determine the set of unique test cases
per project and their execution result. The 7,047 failing test exe-
cutions were caused by 2,936 unique tests cases (according to their
file name hash). For 2,051 (70%), we observed at least one suc-
cessful execution. Hence, we never saw a successful execution for
30% of all tests.

For the 2,051 failing tests that we know have been fixed later,
we examine know how long developers take to fix a failing test.
50% of test repairs happen within 10 minutes, and 75% within 25
minutes (Table 2).

4.4 RQ4: Do Developers Follow TDD?
In RQ4, we aim to give an answer to the adoption of TDD in

practice.
Our results reveal that the sessions of only ten developers match

against a strict TDD definition, the top NFA in Figure 3 (2% of
all developers, or 15% of developers who executed tests, see Sec-
tion 4.1). In total, only 4% of sessions with test executions contain
strict TDD patterns. Only one developer uses strict TDD in more
than 30% of the development process on average. The majority
(68%) of the developer’s intervals are devoted to the refactoring
phase of TDD (depicted in Figure 4). The remaining nine develop-
ers use strict TDD in less than 8% of their intervals. Refactoring
is the dominant phase in TDD, consuming on average 72% of the
TDD process. All developers who practiced strict TDD have a lot
of programming experience: four declared an experience between
7 and 10 years, the remaining six greater than 10 years.

Sessions from 33 developers match against the lenient TDD NFA

184

●

●

●
●

0%

20%

40%

60%

0 100 200 300
Time (s)

F
re

q
u
e
n
c
y
 o

f
re

a
c
ti
o
n

Reaction
● Read Prod. Code

Switched Focus
Were inactive
Typed Prod. Code
Read Test Code
Typed Test Code
Switched Persp.

Figure 6: The immediate reactions to a failing test.

in Figure 3 (8% of all developers, or 49% of developers who exe-
cuted tests, see Section 4.1). Just two developers use lenient TDD
in more than 30% of their intervals, including the developer who
has over 30% strict TDD matches. Six developers use lenient TDD
in more than 10%, but less than 30% of their intervals. 25 of the 33
developers who use lenient TDD also refactor their code according
to the TDD refactoring process in Figure 4. For them, 52% of in-
tervals that match against the lenient TDD are due to refactoring.
Of the 33 developers, seven have little programming experience (1-
2 years), three have some experience (3-6 years), and the majority
with 22 are very experienced (> 7 years).

Even the top TDD users do not follow TDD in most sessions.
For example, the user with the highest TDD usage has one session
with 69% compliance to TDD. On the other hand, in the majority of
the remaining sessions, the developer did not use TDD at all (0%).
We verified this to be common also for the other developers who
partially used TDD. These low results on TDD are complemented
by 93 projects where users claimed to use TDD, but in reality only
12 of the 93 did.

4.5 RQ5: How Much Do Developers Test?
We motivated our investigation by asking how much time de-

velopers spend on engineering tests. To answer this question, we
consider Reading and Typing intervals, and further split the two
intervals according to the type of the document the developer works
on: either a production or test class. The duration of test execu-
tions does not contribute to it, as developers can typically work

0

10

20

−100 −50 0 50 100
Delta production−% reality vs. estimation (% points)

N
u

m
b

e
r

o
f

p
ro

je
c
ts

Figure 7: The delta between estimation and reality.

while tests execute. The short duration is negligible compared to
the time spent on reading and typing, because test executions nor-
mally finish within 5 seconds (see Section 4.2). When registering
new projects, developers estimated the time they spend on testing
in the project. Hence, we have the possibility to verify how ac-
curate their estimation was by comparing it to their actual testing
behavior.

There are two ways to aggregate this data at different levels of
granularity. The first is to explore the phenomenon on a per-project-
basis: we separately sum up the time developers are engineering
(i.e. reading and writing) production classes and test classes, and
divide it by the sum of the two. Then, we compare this value to
the developers’ estimation for the project. This way, we measure
how accurate each individual prediction was. The second way is to
explore the phenomenon in our whole dataset, by averaging across
project and not normalizing for the contributed development time
(only multiplying each estimation with it).

Figure 7 shows a histogram of the difference between the mea-
sured production percentage and its estimation per project. A value
of 0 means the estimation was accurate. A value of 100 denotes that
the programmer expected to only work on tests, but in reality only
worked on production code (-100 precisely the opposite). The me-
dian of the distribution is shifted to the right of 0. Thus, developers
tend to overestimate the time they devote to testing, on average by
14% percentage points per project. For our whole dataset, we find
that all developers spend in total 75% of their time writing or read-
ing production classes, and 25% of their time on testing. However,
they estimated a distribution of 52% on production code, and 48%
on tests, so they overestimated the time spent on testing twice. The
average time spent on production code versus test code is very sim-
ilar to this overall ratio, with 77% and 23% respectively.

Moreover, reading and writing are not uniformly spread across
test and production code: while developers read production classes
for 67% of the total time they spend in them, they read tests much
longer, namely 77% of the total time they spend in them. To ver-
ify whether this preliminary finding is statistically relevant, we use
a one-tailed Wilcoxon Rank Sum test, comparing the pairwise per-
centage of time spent in reading test and in reading production code
for each project. It confirms that, relatively, developers spend more
time reading test than production code (significant at p = 0.039).

185

5. DISCUSSION
In this section, we first interpret our results and then present pos-

sible threats to validity.

5.1 Interpretation of Results
In RQ1, we established that in over half of the projects, we did

not see a single opened test, even when considering a very lenient
definition that likely overestimates the number of tests. While this
does not mean that the projects contain no tests (a repository analy-
sis might find that there exist a handful of test), it does indicate that
testing is not an important activity for the registered WatchDog de-
velopers. Moreover, only 47% of the projects which claimed to
have JUnit tests in the survey actually had intervals showing tests.
For the other 53%, their developer did not execute, read, or modify
a single test within five months. Since we likely overestimate tests,
these two discoveries raise questions: Which value do such tests
have in practice? And, further, are developers’ answers true?

The majority of projects and users do not practice testing ac-
tively.

Only 19% of all projects comprise tests that developers can run
in the IDE. For 15% of projects that have such tests, developers
never use the possibility to execute them. This gives a first hint that
testing might not be as popular as we thought [24]. Reasons might
include that there are often no preexisting tests for the developers
to modify, that they are not aware of existing tests, or that testing
is too time-consuming or difficult to do. The apparent lack of tests
might be one factor for the bug-proneness of many current software
systems.

Even for projects which have tests, developers did not execute
them in most of the sessions. In contrast, the mean number of test
runs for sessions with at least one test execution was high (20).

Developers largely do not run tests in the IDE. However, when
they do, they do it heftily.

One reason why some developers do not execute tests in the IDE
is that the tests would render their machine unusable, for example
during the execution of UI tests in the Eclipse Platform UI proj-
ect. The Eclipse developers push their untested changes to the Ger-
rit review tool [25] and rely on it to trigger the execution of the
tests on the continuous integration server. In such a scenario, the
changes only become part of the “holy repository” if the tests ex-
ecute successfully. Otherwise, the developer is notified via email.
Despite the tool overhead and a possibly slower reaction time, our
low results on test executions in the IDE suggest that developers in-
creasingly prefer such more complex setups to manually executing
their tests in the IDE. IDE creators could improve the continuous
integration server support in future releases to facilitate this new
workflow of developers.

Every developer is familiar with the phrase “Oops, I broke the
build” [26]. The weak correlations between test churn and test exe-
cutions (RQ1.3), and production churn and test executions (RQ1.4)
suggest an explanation: developers simply do not assert for every
change that their tests still run, because “this change cannot pos-
sibly break the tests.” Even when the modifications to production
or test code get larger, developers do not necessarily execute tests
in the IDE more often [43]. These observations could stem from
a development culture that embraces build failures and sees them
as part of the normal development life-cycle, especially when the
changes are not yet integrated into the main development line.

The weak correlation between production and test code churn in
RQ1.5 is on the one hand expected: tests often serve as documen-
tation and specification of how production code should work, and
are therefore less prone to change. This conclusion is in line with
previous findings from repository analyses [4, 27]. If, on the other
hand, a practice like TDD was widely adopted (RQ4), we would
expect more co-evolution of tests and production code, expressed
in a higher correlation.

Tests and production code do not co-evolve gracefully.

Another factor that could influence how often developer run tests,
is how long they take to run. In RQ2, we found that testing in the
IDE happens fast-paced. Most tests finish within five seconds, or
less.

Tests run in the IDE take a very short amount of time.

We could not observe a relation between the test duration and
their execution frequency. The reason for this could be that there
is little difference between a test which takes 0.1 seconds and one
which takes 5 seconds in practice. Both give almost immediate
feedback to the programmer. Hence, it seems unlikely that software
engineers choose not to run tests because of their duration.

One reason for the short test duration is that developers typically
do not execute all their tests in one test run. Instead, they practice
test selection, and run only a small subset of their tests, mostly less
than 1% of all available tests. This observed manual behavior dif-
fers strongly from an automated test execution as part of the build,
which typically executes all tests.

Developers frequently select a specific set of tests to run in the
IDE. In most cases, developers execute one test.

We can explain 99% of these test selections with two scenarios:
developers either want to investigate a possibly failing test case in
isolation (90% of test selections), or exclude such an irritating test
case from a larger set of tests (9%). This finding complements and
strengthens a study by Gligoric et al., who compared manual test
selection in the IDE to automated test selection in a population of
14 developers [28].

One other possible explanation for the short time it takes tests to
run in the IDE is that 65% of them fail (RQ3): once a test fails,
the developer might abort the execution of the remaining tests and
focus on the failing test, as discovered for RQ2.3.

Most test executions in the IDE fail.

For 30% of the failing tests, we never saw a successful execution.
We built the set of tests in a project on a unique hash of their file
names, which means we cannot make a connection between a failed
and a successful test execution when it was renamed in-between.
However, this very specific scenario is very rare, as observed at the
commit-level by Pinto et al. [3]. Consequently, a substantial part of
tests of up to 30% are broken and not repaired immediately. As a
result, developers exclude such “broken” tests from tests executions
in the IDE, as observed for RQ2.3.

Since test failures in the IDE are such a frequently recurring
event, software engineers must have good strategies to manage and
react to them.

186

The typical immediate reaction to a failing test is to dive into
the offending production code.

Closing the IDE, perhaps out of frustration that the test fails, or
opening the debug perspective to examine the test are very rare re-
actions. Five seconds after a test failure, ∼20% of programmers
have already switched focus to another application on their com-
puter. An explanation could be that they search for a solution else-
where, for example in a documentation PDF or on the Internet.
This is useful if the test failure originates from (miss-)using a lan-
guage construct, the standard library, or other well-known APIs
and frameworks. Researchers try to integrate answers from Inter-
net fora like Stack Overflow into the IDE [29] to make this possibly
interrupting context switch unnecessary.

TDD is one of the most widely studied software development
processes [20, 21]. Even so, it is unknown how widespread its use
is in practice. We have developed a formal technique that can pre-
cisely measure how strictly developers follow TDD. In all our 460
projects, we found only three users that employed TDD for more
than 30% of their changes, and only one session where the majority
of changes happened according to TDD. Similar to RQ1, we notice
a stark contrast between survey answers and the observed behavior
of developers. Only in 12% of the projects claiming to do TDD,
the developers actually followed it (to a small degree).

TDD is not widely practiced. Programmers who claim to do
it, neither follow it strictly nor for all their modifications.

Possible reasons for the small adoption of TDD in practice are
manifold: developers might not find TDD practical or useful for
most of their changes (for example, when implementing a UI), they
might take shortcuts and skip the mandatory test executions in Fig-
ure 3 because they know the test cannot or must succeed, or the
underlying code does simply not allow development in a test-first
manner, for example because of framework restrictions. Further-
more, TDD might simply be misunderstood by developers.

The question of how much time software engineers put into test-
ing their application was first asked (and anecdotally answered) by
Brooks in 1975 [6]. Nowadays, everybody seems to know that
“testing takes 50% of your time.” While their estimation was re-
markably on-par with Brooks’ general estimation (48:52), devel-
opers tested considerably less than they thought they would (only
25% of their time), overestimating the real testing time two-fold.

Developers spend a quarter of their time engineering tests in
the IDE. They overestimated this number twofold.

In comparison, students tested 9% of their time [12], and overes-
timated their testing effort threefold. Hence, real-world developers
test more and have a better understanding of how much they test
than students. Surprisingly, their perception is still far from real-
ity. While the reasons for this “Test Effect” might be psychological
(testing is usually not attributed with “fun” and a more destructive
activity by nature), its consequences can have severe implications
on the quality of the resulting product. Software developers should
be aware of how little they test, and how much their perception
deviates from the actual effort they invest in testing in the IDE.
Together with RQ1 and RQ3, this observation also casts doubt on
whether we can trust untriaged answers from developers in surveys,
especially if the respondents are unknown to the survey authors.

Observed behavior often contradicted survey answers.

5.2 Threats to Validity
In this section, we discuss the limitations and threats that can

affect the validity of our study and show how we mitigated them.

Limitation. The main limitation of our study is that we can only
capture what happens inside Eclipse. Conversely, if developers per-
form work outside the IDE, we cannot record it. Examples for such
behavior include pulling-in changes through an external revision
control tool like git or svn or modifying a file loaded in the IDE
with an external editor. We cannot detect work on a white board
or thought processes of developers, which are generally very dif-
ficult to quantify. However, in our research questions, we are not
interested in the absolute time of work processes, but in their ra-
tio. As such, it seems reasonable to assume that work outside the
IDE happens in the same ratio as in the IDE. For example, we have
no indication to assume that test design requires more planning or
white board time than production code.

Construct validity concerns errors caused by the way we col-
lect data. For capturing developers’ activities we use WatchDog
(described in Section 2.3), which we thoroughly tested with end-
to-end, integration and developer tests. Moreover, 40 students al-
ready had used it before the start of our data collection phase [12].
To verify the integrity of our infrastructure and the correctness of
the analysis results, we performed end-to-end tests on Linux, Win-
dows, and MacOS with short staged Eclipse sessions, starting from
the original data collection (behavior in Eclipse) and ending at the
analyzed results.

Internal validity regards threats inherent to our study.
Our population (see Section 2.2.2) shows no peculiarity, like an

unusually high number of users from one IP address or from a coun-
try where the software industry is weak. Combined with the fact
that we use a mild form of security (HTTP access authentication),
we have no reason to believe that our data has been tampered with
(for example, in order to increase the chances of winning a prize).

A relatively small set of power-users contribute the majority of
development sessions. However, the distribution in Figure 1 does
not follow a Power-Law distribution (the goodness-of-fit test after
Clauset et al. [30] fails to reject that it is at p = 0.09). This does
not mandate an a-priori need to further filter or sample sessions or
users. Moreover, as we are exploring a phenomenon, we would
run the risk of distorting it through sampling. Since WatchDog
is freely available, we cannot control who installs it. Due to the
way we advertise it (see Section 2.2.1), our sample might be biased
towards developers who are actively interested in testing.

The Hawthorne effect poses a similar threat [31]: participants of
our study would be more prone to use, run and edit tests than they
would do in general, because they know (1) that they are being
measured and (2) they can preview a limited part of their behavior.
As discussed in Section 2.2.1, it was necessary to give users an
incentive to install WatchDog. Without the preview functionality,
we would likely not have had any users.

All internal threats point in the direction that our low results on
testing are an overestimation of the real testing practices.

External validity threats concern the generalizability of our re-
sults. While we observed over 13 years of development worktime
(collected in 1,337,872 intervals originating from 416 developers
over a period of five months), the testing practices of particular
individuals, organizations, or companies are naturally going to de-

187

viate from our population phenomenon observation. Our contri-
bution can be understood as an observation of the general state of
developer testing among a large corpus of developers and projects.
However, we also examined if certain sub-groups deviated signif-
icantly form our general observations. As an example of this, we
identified that only very experienced programmers follow TDD to
some extent in Section 4.4.

Since other programming language communities have different
testing cultures and use other IDEs that might not facilitate test-
ing in the same way that the Eclipse IDE does, their results might
deviate from the relatively mature and test-aware Java community.

Last but not least, the time we measure for an activity like testing
in the IDE does not equal the effort an organization has to invest in
it. Arguments against this are that developer testing per hour is as
expensive as development (since both are done by the same per-
sons), and that time is typically the critical resource in software de-
velopment. An in-depth investigation with management data such
as real project costs is necessary to validate this in practice.

Our conclusions are drawn from the precisely-defined and
scoped setting of developer testing. To draw a complete pic-
ture of the state of testing, more multi-faceted research in dif-
ferent environments and settings is needed.

6. RELATED WORK
A number of tools have been developed to assess development

activity at the sub-commit level. These tools include Syde [32],
Spyware [33], CodingTracker [34], the “Change-Oriented Progr-
amming Environment,”8 the “Eclipse Usage Data Collector,”9 Qu-
antifiedDev,10 Codealike,11 and the work by Minelli et al. [35].
However, none of these focuses on time-related developer testing.

When investigating the presence or absence of tests, Kochar et
al. mined 20,000 open-source projects and found that 62% contain
unit tests [36]. LaToza et al. [37] surveyed 344 software engineers,
testers and architects at Microsoft, with 79% of the respondents
indicating to use unit tests. Our findings indicate that only 35%
of projects are concerned with testing. One factor why our figure
might be smaller is that we do not simply observe the presence of
some tests, but that we take into account whether they are actually
being worked with.

Pham et al. [38] interviewed 97 computer science students and
observed that novice developer perceive testing as a secondary task.
The authors conjectured that students are not motivated to test as
they have not experienced its long-term benefits. Similarly, Meyer
et al. found that 47 out of 379 surveyed software engineering pro-
fessionals perceive tasks such as testing as unproductive [39].

Zaidman et al. [4] and Marsavina et al. [27] studied when tests
are introduced and changed. They found that test and production
code typically do not gracefully co-evolve. Our findings confirm
this observation on a more fine-grained level. Moreover, they found
that writing test code is phased: after a longer period of production
code development, developers switch to test code. Marinescu et
al. [40] observed that test coverage usually remains constant be-
cause already existing tests execute part of the newly added code.
Feldt [41] on the other hand notes that test cases “grow old”: if
test cases are not updated, they are less likely to identify failures.
In contrast, Pinto et al. [3] found that test cases evolve over time.

8
http://cope.eecs.oregonstate.edu

9
https://eclipse.org/epp/usagedata

10
http://www.quantifieddev.org

11
https://codealike.com

They highlight that tests are repaired when the production code
evolves, but they also found that non-repair test modifications oc-
curred nearly four times as frequently as test repairs. Deletions of
tests are quite rare and if they happen, this is mainly due to refac-
toring the production code. A considerable portion of test modifi-
cations are for the purpose of augmenting a test suite.

The work presented in this paper differs from the aforementioned
works in that the data that we use is not obtained (1) from a software
repository [3, 4, 27, 36, 41] or (2) purely by means of a survey or
interview [37–39, 42]. Instead, our data is automatically gathered
inside the IDE, which makes it (1) more fine-grained than commit-
level activities and (2) more objective than surveys.

7. CONCLUSION
Our work studies how developers test in their IDE. Our goal was

to uncover the underlying habits of how developers drive software
development with tests. To this end, we performed a large-scale
field study using low-interference observation instruments installed
within the developer’s working environment to extract developer
activity. We complemented and contrasted these objective obser-
vations with surveys of said developers. We found that testing (at
least in the IDE) is not a popular activity, that developers do not
test as much as they believe they do, and that TDD is not a popular
development paradigm.

This work makes the following key contributions:

1) A low interference method and its implementation to record
fine-grained activity data from within the developers’ IDEs.

2) A formalized approach to detect the use of TDD.
3) A thorough statistical analysis of the activity data resulting

in both qualitative and quantitative answers in developers’
testing activity habits, test run frequency and time spent on
testing.

In general, we find a distorting gap between expectations and
beliefs about how testing is done in the IDE, and the real practice.
This gap manifests itself in the following implications:

Software Engineers should be aware that they tend to overesti-
mate their testing effort and do not follow test-driven de-
velopment by the book. This might lead to a lower-than-
expected quality in their software.

IDE creators could design next-generation IDEs that support de-
velopers with testing by integrating: 1) solutions from Inter-
net fora, 2) reminders for developers to execute tests during
large code changes, 3) automatic test-selection, and 4) re-
mote testing on the build server.

Researchers can acknowledge the difference between common
beliefs about software testing, and our observations from
studying developer testing in the real world. Specifically,
there is a discrepancy between the general attention to test-
ing and TDD in research, and their observed popularity
in practice. More abstractly, developers’ survey answers
did not match their behavior in practice, and student data
deviated significantly from real-world observations. This
may have implications on the credibility of certain research
methods in software engineering and showcases the impor-
tance of triangulation with mixed-method approaches.

8. ACKNOWLEDGMENTS
We owe our biggest gratitude to the hundreds of WatchDog users.

Moreover, we thank Nepomuk Seiler, Shane McIntosh, Michaela
Greiler, Diana Kupfer, Marcel Bruch, Ian Bull, Sven Amann, Ka-
trin Kehrbusch, Maaike Beliën, and the anonymous reviewers.

188

http://cope.eecs.oregonstate.edu
https://eclipse.org/epp/usagedata
http://www.quantifieddev.org
https://codealike.com

9. REFERENCES

[1] P. Runeson, “A survey of unit testing practices,” IEEE

Software, vol. 23, no. 4, pp. 22–29, 2006.

[2] A. Begel and T. Zimmermann, “Analyze this! 145 questions
for data scientists in software engineering,” in Proceedings of

the International Conference on Software Engineering

(ICSE), pp. 12–13, ACM, 2014.

[3] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths
and realities of test-suite evolution,” in Proceedings of the

Symposium on the Foundations of Software Engineering

(FSE), pp. 33:1–33:11, ACM, 2012.

[4] A. Zaidman, B. Van Rompaey, A. van Deursen, and
S. Demeyer, “Studying the co-evolution of production and
test code in open source and industrial developer test
processes through repository mining,” Empirical Software

Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[5] A. Bertolino, “Software testing research: Achievements,
challenges, dreams,” in Proceedings of the International

Conference on Software Engineering (ISCE), Workshop on

the Future of Software Engineering (FOSE), pp. 85–103,
2007.

[6] F. Brooks, The mythical man-month. Addison-Wesley, 1975.

[7] G. Meszaros, xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, 2007.

[8] R. L. Glass, R. Collard, A. Bertolino, J. Bach, and C. Kaner,
“Software testing and industry needs,” IEEE Software,
vol. 23, no. 4, pp. 55–57, 2006.

[9] A. Bertolino, “The (im)maturity level of software testing,”
SIGSOFT Softw. Eng. Notes, vol. 29, pp. 1–4, Sept. 2004.

[10] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in
the wild: The social and organisational dimensions of real
world practice,” Comput. Supported Coop. Work, vol. 18,
pp. 559–580, Dec. 2009.

[11] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study

Research in Software Engineering: Guidelines and

Examples. Wiley, 2012.

[12] M. Beller, G. Gousios, and A. Zaidman, “How (much) do
developers test?,” in Proceedings of the 37th International

Conference on Software Engineering (ICSE), NIER Track,
pp. 559–562, IEEE, 2015.

[13] P. Muntean, C. Eckert, and A. Ibing, “Context-sensitive
detection of information exposure bugs with symbolic
execution,” in Proceedings of the International Workshop on

Innovative Software Development Methodologies and

Practices (InnoSWDev), pp. 84–93, ACM, 2014.

[14] S. S. Shapiro and M. B. Wilk, “An analysis of variance test
for normality (complete samples),” Biometrika, vol. 52,
no. 3-4, pp. 591–611, 1965.

[15] J. L. Devore and N. Farnum, Applied Statistics for Engineers

and Scientists. Duxbury, 1999.

[16] W. G. Hopkins, A new view of statistics. 1997.
http://newstatsi.org, Accessed 16 March 2015.

[17] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics

doklady, vol. 10, pp. 707–710, 1966.

[18] J. C. Munson and S. G. Elbaum, “Code churn: A measure for
estimating the impact of code change,” in Proceedings of the

International Conference on Software Maintenance (ICSM),
p. 24, IEEE, 1998.

[19] K. Beck, Test Driven Development – by Example. Addison
Wesley, 2003.

[20] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An
experimental evaluation of test driven development vs.
test-last development with industry professionals,” in
Proceedings of the International Conference on Evaluation

and Assessment in Software Engineering (EASE),
pp. 50:1–50:10, ACM, 2014.

[21] Y. Rafique and V. B. Misic, “The effects of test-driven
development on external quality and productivity: A
meta-analysis,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 835–856, 2013.

[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction

to Automata theory, languages, and computation. Prentice
Hall, 2007.

[23] G. Rothermel and S. Elbaum, “Putting your best tests
forward,” IEEE Software, vol. 20, pp. 74–77, Sept 2003.

[24] A. Patterson, M. Kölling, and J. Rosenberg, “Introducing
unit testing with BlueJ,” ACM SIGCSE Bulletin, vol. 35,
pp. 11–15, June 2003.

[25] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens,
“Modern code reviews in open-source projects: which
problems do they fix?,” in Proceedings of the Working

Conference on Mining Software Repositories (MSR),
pp. 202–211, ACM, 2014.

[26] E. Derby, D. Larsen, and K. Schwaber, Agile retrospectives:

Making good teams great. Pragmatic Bookshelf, 2006.

[27] C. Marsavina, D. Romano, and A. Zaidman, “Studying
fine-grained co-evolution patterns of production and test
code,” in Proceedings International Working Conference on

Source Code Analysis and Manipulation (SCAM),
pp. 195–204, IEEE, 2014.

[28] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An
empirical evaluation and comparison of manual and
automated test selection,” in Proceedings of the 29th

ACM/IEEE international conference on Automated software

engineering, pp. 361–372, ACM, 2014.

[29] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and
M. Lanza, “Mining stackoverflow to turn the ide into a
self-confident programming prompter,” in Proceedings of the

Working Conference on Mining Software Repositories

(MSR), pp. 102–111, ACM, 2014.

[30] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law
distributions in empirical data,” SIAM review, vol. 51, no. 4,
pp. 661–703, 2009.

[31] J. G. Adair, “The Hawthorne effect: A reconsideration of the
methodological artifact.,” Journal of applied psychology,
vol. 69, no. 2, pp. 334–345, 1984.

[32] L. Hattori and M. Lanza, “Syde: a tool for collaborative
software development,” in Proceedings of the International

Conference on Software Engineering (ICSE), pp. 235–238,
ACM, 2010.

[33] R. Robbes and M. Lanza, “Spyware: a change-aware
development toolset,” in Proceedings of the International

Conference on Software Engineering (ICSE), pp. 847–850,
ACM, 2008.

[34] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig,
“A comparative study of manual and automated
refactorings,” in Proceedings of the 27th European

Conference on Object-Oriented Programming, 2013.

[35] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi,
“Visualizing developer interactions,” in Proceedings of the

Working Conference on Software Visualization (VISSOFT),
pp. 147–156, IEEE, 2014.

189

http://newstatsi.org

[36] P. Kochhar, T. Bissyande, D. Lo, and L. Jiang, “An empirical
study of adoption of software testing in open source
projects,” in Proceedings of the International Conference on

Quality Software (QSIC), pp. 103–112, IEEE, 2013.

[37] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining
mental models: a study of developer work habits,” in
Proceedings of the International Conference on Software

Engineering (ICSE), pp. 492–501, ACM, 2006.

[38] R. Pham, S. Kiesling, O. Liskin, L. Singer, and K. Schneider,
“Enablers, inhibitors, and perceptions of testing in novice
software teams,” in Proceedings of the International

Symposium on Foundations of Software Engineering (FSE),
pp. 30–40, ACM, 2014.

[39] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann,
“Software developers’ perceptions of productivity,” in
Proceedings of the International Symposium on Foundations

of Software Engineering (FSE), pp. 19–29, ACM, 2014.

[40] P. D. Marinescu, P. Hosek, and C. Cadar, “Covrig: a
framework for the analysis of code, test, and coverage
evolution in real software,” in Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA), pp. 93–104, ACM, 2014.

[41] R. Feldt, “Do system test cases grow old?,” in Proceedings of

the International Conference on Software Testing,

Verification and Validation (ICST), pp. 343–352, IEEE, 2014.

[42] M. Greiler, A. van Deursen, and M. Storey, “Test
confessions: a study of testing practices for plug-in systems,”
in Software Engineering (ICSE), 2012 34th International

Conference on, pp. 244–254, IEEE, 2012.

[43] V. Hurdugaci and A. Zaidman, “Aiding software developers
to maintain developer tests,” in Proceedings of the European

Conference on Software Maintenance and Reengineering

(CSMR), pp. 11–20, IEEE, 2012.

190

